Транскрипция: влияние на экспрессию рекомбинантных генов


Для экспрессии клонированного гена он должен быть транскрибирован РНК-полимеразой, а образовавшаяся РНК транслирована рибосомами с образованием нативного белкового продукта. Следовательно, для эффективной экспрессии в клетках E. coli любой ген должен находиться под контролем регуляторных элементов данного микроорганизма. Примером промотора, используемого в экспрессирующих векторах, является промотор Taq , который в своем составе объединяет последовательности промоторов лактозного и триптофанового оперонов E. coli.

Базальный уровень транскрипции рекомбинантных генов гарантируется небольшим набором упорядоченных регуляторных последовательностей. Например, у E. coli это происходит при наличии перед структурной частью клонированного гена последовательностей в окрестностях нуклеотидов +1, -10 и -35.

-35 -10 +1 a.....tcTTGACat..t........t.tg.TAtAat........cat Даже у E. coli транскрипция большинства генов носит регулируемый характер, что обеспечивается системой белков- репрессоров и активаторов, а также низкомолекулярных эффекторов, влияющих на взаимодействие РНК-полимеразы с транскрибируемыми генами. Необходимость регулирования экспрессии генов в генной инженерии диктуется тем, что сверхэкспрессия клонированных генов в клетках-продуцентах рекомбинантных белков при использовании сильных конститутивных промоторов может отрицательно сказываться на их жизнеспособности, поскольку продукты экспрессии часто обладают цитотоксическим действием. В этом случае сверхэкспрессия клонированных генов сопровождается снижением скорости или остановкой роста клеток. Для предотвращения этого используют генно-инженерные конструкции, в которых экспрессия клонированных генов в значительной степени подавлена (репрессирована) на ранних фазах роста культуры рекомбинантных клеток и может быть дерепрессирована в нужный момент времени.

В качестве примера рассмотрим две системы регулируемой экспрессии рекомбинантных генов в клетках E. coli.

В одном случае для контроля экспрессии клонированных генов используют систему регуляторных элементов лактозного оперона , в другом - систему промотор-репрессор-оператор фага лямбда .

Принцип регуляции экспрессии рекомбинантных генов в обоих случаях один и тот же. В векторные молекулы вводятся регуляторные последовательности фага лямбда или lac-оперона , за которыми следуют последовательности нуклеотидов полилинкера с несколькими уникальными сайтами рестрикции, по которым проводится клонирование исследуемого гена. Одновременно в тот же вектор вводится ген-регулятор, кодирующий белок-репрессор. В отсутствие индуцирующего воздействия молекулы репрессора, ген которого экспрессируется конститутивно, связываются с оператором, препятствуя взаимодействию РНК-полимеразы с промотором, под контролем которого находится клонированный рекомбинантный ген. Это приводит к резкому снижению уровня транскрипции клонированного гена, низкому внутриклеточному содержанию соответствующей мРНК и белкового продукта ее трансляции.

Различием двух систем регулируемой экспрессии является способ их индукции. В случае регуляторной системы lac-оперона чаще всего используют синтетический аналог природного индуктора (алло- лактозы) - изопропил-бета-D-тиогалактопиранозид ( IPTG ). Индуктор связывается с молекулой репрессора и нарушает его взаимодействие с операторным участком ДНК. Область lac-промотора становится доступной для РНК-полимеразы, которая начинает транскрибировать гены, расположенные вслед за промотором. В системе репрессии- дерепрессии фага лямбда используют ген репрессора cI , содержащий температурочувствительную мутацию. Наличие такой мутации приводит к тому, что мутантный белок-репрессор сохраняет свою нативную конформацию, а следовательно, и способность подавлять синтез РНК только при пермиссивной температуре (как правило, 28-30о). При повышении температуры окружающей среды до 42о происходят инактивация белка-репрессора и дерепрессия генов, расположенных под контролем промоторов PL или PR фага лямбда.

Использование системы репрессии-дерепрессии, чувствительной к температуре, более технологично по сравнению с химической индукцией, так как это менее дорогой способ; во-вторых, для системы фага лямбда характерна более высокая степень репрессии генов, находящихся под ее контролем, и соответственно более низкий базальный уровень их экспрессии. Однако сверхпродукция рекомбинантных белков, особенно эукариотических, часто сопровождается внутриклеточным образованием нерастворимых агрегатов, что отсутствует при использовании для выращивания рекомбинантных клеток температур ниже 30о. Эти эффекты накладывают ограничения на использование векторов с температурочувствительным контролем экспрессии для продукции эукариотических и в меньшей степени прокариотических белков в бактериальных клетках.

Для обеспечения регулируемой тканеспецифической экспрессии рекомбинантных генов в соматических клетках животных и растений в составе векторов используют энхансеры, которые избирательно стимулируют транскрипцию в соответствующих тканях и не оказывают такого действия на гены в тканях, клетки которых не экспрессируют необходимые регуляторные белки.

Кроме того, популярным становится введение в экспрессирующие эукариотические векторы пограничных последовательностей нуклеотидов, фланкирующих клонируемые гены, которые помогают обеспечивать экспрессию рекомбинантных генов, сводя к минимуму эффект их положения в хромосомах соматических клеток.

По-видимому, не существует систем репрессии клонируемых генов, которые бы полностью блокировали их транскрипцию. Это создает проблемы при клонировании генов белков, токсичных для клеток-хозяев, таких как колицины, эндо- и экзонуклеазы, протеиназы и т.п.

Наряду с промоторами, векторы, экспрессирующие рекомбинантные гены в клетках E. coli, должны содержать и гомологичные терминаторы транскрипции. Необходимость в этом вызвана тем, что даже нетранслируемые избыточные 3'-концевые последовательности нуклеотидов мРНК, транскрибированной с рекомбинантного гена, отрицательно сказываются на эффективности ее трансляции, что, по-видимому, связано с участием таких последовательностей в образовании сложной третичной структуры рекомбинантных мРНК.

Смотрите также:

  • ВЕКТОРЫ ЭКСПРЕССИРУЮЩИЕ: КОНСТРУИРОВАНИЕ