Entry - #250800 - METHEMOGLOBINEMIA DUE TO DEFICIENCY OF METHEMOGLOBIN REDUCTASE - OMIM
# 250800

METHEMOGLOBINEMIA DUE TO DEFICIENCY OF METHEMOGLOBIN REDUCTASE


Alternative titles; symbols

NADH-DEPENDENT METHEMOGLOBIN REDUCTASE DEFICIENCY
NADH-CYTOCHROME b5 REDUCTASE DEFICIENCY
METHEMOGLOBINEMIA, CONGENITAL, AUTOSOMAL RECESSIVE


Other entities represented in this entry:

METHEMOGLOBINEMIA, TYPE I, INCLUDED
METHEMOGLOBINEMIA, TYPE II, INCLUDED
NADH-CYTOCHROME b5 REDUCTASE DEFICIENCY, TYPE I, INCLUDED
NADH-CYTOCHROME b5 REDUCTASE DEFICIENCY, TYPE II, INCLUDED

Phenotype-Gene Relationships

Location Phenotype Phenotype
MIM number
Inheritance Phenotype
mapping key
Gene/Locus Gene/Locus
MIM number
22q13.2 Methemoglobinemia, type II 250800 AR 3 CYB5R3 613213
22q13.2 Methemoglobinemia, type I 250800 AR 3 CYB5R3 613213
Clinical Synopsis
 

INHERITANCE
- Autosomal recessive
GROWTH
Other
- Growth retardation
HEAD & NECK
Head
- Microcephaly (type II)
Eyes
- Strabismus (type II)
RESPIRATORY
- Dyspnea, exertional
SKIN, NAILS, & HAIR
Skin
- Cyanosis
NEUROLOGIC
Central Nervous System
- Headache
- Mental retardation (type II)
- Developmental delay (type II)
- Opisthotonos (type II)
- Hypertonia (type II)
- Spasticity (type II)
- Myelination defects (type II)
HEMATOLOGY
- Polycythemia
- Type I - methemoglobin concentration 10-35%
LABORATORY ABNORMALITIES
- NADH-cytochrome b(5) reductase deficiency
MISCELLANEOUS
- Most common form of congenital methemoglobinemia
- Two clinical forms - type I (deficiency of b5R is isolated to erythrocytes) and type II (deficiency of b5R in all cell types)
- Type II is progressive and leads to shortened lifespan
- Type I b5R endemic in Athabascan Indians, Navajo Indians, and Yakutsk natives of Siberia
- Heterozygotes at risk of developing acute, symptomatic methemoglobinemia after exposure to exogenous, methemoglobin-inducing agents
MOLECULAR BASIS
- Caused by mutation in the cytochrome b5 reductase 3 gene (CYB5R3, 613213.0001)

TEXT

A number sign (#) is used with this entry because autosomal recessive methemoglobinemia due to deficiency of methemoglobin reductase is caused by homozygous or compound heterozygous mutation in the CYB5R3 gene (613213) on chromosome 22q13.

See also autosomal recessive methemoglobinemia type IV (250790), which is caused by mutation in the cytochrome b5 gene (CYB5A; 613218). Type III has been withdrawn (see below and Nagai et al., 1993).

Autosomal dominant methemoglobinemia, referred to as the 'M' type, is caused by variation in the hemoglobin A (HBA1; 141800) or hemoglobin B (HBB; 141900) genes; see 617973 and 617971, respectively.


Description

Methemoglobinemia due to NADH-cytochrome b5 reductase deficiency is an autosomal recessive disorder characterized clinically by decreased oxygen carrying capacity of the blood, with resultant cyanosis and hypoxia (review by Percy and Lappin, 2008).

There are 2 types of methemoglobin reductase deficiency. In type I, the defect affects the soluble form of the enzyme, is restricted to red blood cells, and causes well-tolerated methemoglobinemia. In type II, the defect affects both the soluble and microsomal forms of the enzyme and is thus generalized, affecting red cells, leukocytes, and all body tissues. Type II methemoglobinemia is associated with mental deficiency and other neurologic symptoms. The neurologic symptoms may be related to the major role played by the cytochrome b5 system in the desaturation of fatty acids (Vives-Corrons et al., 1978; Kaplan et al., 1979).


Clinical Features

Gibson (1948) and Barcroft et al. (1945) correctly concluded that erythrocytes from affected individuals with methemoglobinemia were unable to reduce methemoglobin that is formed continuously at a normal rate under physiologic conditions. Gibson (1948) is credited with identifying this disorder as an enzymatic defect in a reductase (see HISTORY below). Increased circulating levels of methemoglobin, which is brown, give the skin a bluish color, which appears as cyanosis. In the normal state, about 1% of hemoglobin exists as methemoglobin; individuals become symptomatic when methemoglobin levels rise above 25% (Jaffe, 1986). Vascular collapse, coma, and death can occur when methemoglobin approaches 70% of total hemoglobin (review by Percy and Lappin, 2008).

Methemoglobinemia Type I

Tanishima et al. (1985) reported 2 Japanese brothers, born of consanguineous parents, with hereditary methemoglobinemia due to cytochrome b5 reductase deficiency. Katsube et al. (1991) provided follow-up of this family. The brothers, who were 24 and 26 years old, had moderate cyanosis without any evidence of neurologic involvement. Initial laboratory studies (Tanishima et al., 1985) showed lack of CYB5R3 enzyme activity in erythrocytes, leukocytes, and platelets. However, enzyme activity was not deficient in nonhematopoietic cells. Thus, the cases did not belong to either the classic erythrocytic or the generalized type, and was tentatively designated 'type III.' A study of relatives showed intermediate enzyme activity, consistent with heterozygosity. Tanishima et al. (1985) concluded that diagnosis by tissues other than blood cells may be important. Katsube et al. (1991) identified a homozygous mutation in the CYB5R3 gene (L149P; 613213.0003) in these patients. Further biochemical studies of these patients by Nagai et al. (1993) revealed that they did have residual enzyme activity in white blood cells, indicating that they actually had type I methemoglobinemia. As this was the only family reported with methemoglobinemia type III, that designation was shown not to exist.

Wu et al. (1998) reported a 3-year-old Chinese girl with type I methemoglobinemia. The patient was born after normal pregnancy and delivery. From the age of 1 month she appeared persistently cyanosed, but without mental or neurologic abnormalities, and her respiratory and cardiac functions were normal. The concentration of methemoglobin was 15%, and NADH-cytochrome b5R activity in erythrocytes was decreased. Her 5-year-old brother had the same symptoms, with 14.5% methemoglobin and decreased b5R activity. The unaffected parents had heterozygous levels of enzyme activity in red cells (about 65% of normal controls).

Methemoglobinemia Type II

Mental deficiency occurs only with the generalized enzyme-deficient form of the disorder, now known as type II (Hitzenberger, 1932; Worster-Drought et al., 1953; Jaffe, 1963).

Leroux et al. (1975) reported methemoglobinemia and mental retardation in patients with generalized deficiency of cytochrome b5 reductase. Lawson et al. (1977) also concluded that low leukocyte diaphorase correlates with mental retardation, a variable feature. The clinical picture in the neurologic form was reviewed by Jaffe and Hsieh (1971).

Shirabe et al. (1995) reported a girl, born of Italian second-cousin parents, with type II methemoglobinemia. She appeared cyanotic from the first days of life. In addition, the first months of life were characterized by feeding difficulties, failure to thrive, and psychomotor developmental delay. Therapy with ascorbate did not improve her neurologic condition. At 1 year of age, she had severe spastic and dystonic quadriparesis with hyperkinetic involuntary movements, severe microcephaly, and very simple and primitive reactions to environmental changes. A few months later, she developed generalized tonic seizures and myoclonic jerks that were not responsive to common antiepileptic drugs. At the age of 9 years, the patient was in a vegetative status. There was complete absence of immunologically detectable CYB5R3 enzyme in blood cells and skin fibroblasts. Cultured fibroblasts of the patient showed severely reduced NADH-dependent cytochrome c reductase, ferricyanide reductase, and semidehydroascorbate reductase activities.

Vieira et al. (1995) reported an Algerian patient with methemoglobinemia type II. The patient had profound mental retardation, microcephaly, and bilateral athetosis associated with cyanosis and absent CYB5R3 enzyme activities in erythrocytes, lymphocytes, and lymphoblastoid cell lines. Genetic analysis identified a homozygous nonsense mutation in the CYB5R3 gene (R219X; 613213.0007).

Owen et al. (1997) reported a 4-year-old boy with type II methemoglobinemia. He had dystonic athetoid cerebral palsy with mental retardation and microcephaly. He was found to have 60% methemoglobinemia that was persistent but responded to ascorbic acid treatment.

Aalfs et al. (2000) reported a child, born of healthy, unrelated Hindustani Suriname parents, with type II methemoglobinemia. She was born small for gestational age. Central cyanosis was noted shortly after birth. She had severe psychomotor retardation and microcephaly. Neurologic features included athetoid movements, generalized hypertonia, epilepsy, and a complete head lag. At 6 years of age, MRI of the brain demonstrated frontal and bitemporal cortical atrophy, cerebellar atrophy, retarded myelinization, and hypoplasia of the basal ganglia. There was almost no psychomotor development and she developed spastic tetraplegia with scoliosis. The patient died at the age of 8 years. Genetic analysis identified compound heterozygosity for 2 nonsense mutations in the CYB5R3 gene (Q77X; 613213.0014 and R160X; 613213.0015).

Enterogenous Methemoglobinemia

Neonates have only about 60% of normal adult levels of CYB5R3 and do not attain mature levels before 2 months of age (Wright et al., 1999). Low-birth-weight neonates have low levels of erythrocyte CYB5R3 (Miyazono et al., 1999). Thus, even infants without CYB5R3 mutations are at risk of developing methemoglobinemia if exposed to strong oxidizing agents, such as drugs.

Enterogenous methemoglobinemia might be confused with the genetic form. Rossi et al. (1966) described a patient with chronic methemoglobinemia for 14 years whose disorder was resolved by a course of neomycin.

Cohen et al. (1968) suggested that methemoglobinemia induced by malarial prophylaxis, such as chloroquine, primaquine and diamino-diphenylsulfone, could be an indication of the presence of the heterozygous state. In a historic article, Comly (1945) reported cyanosis in infants caused by nitrates in well water, which could easily be confused with cyanotic congenital heart disease and at times He could be fatal (Johnson et al., 1987). This continues to be a problem in rural areas. Presumably, an infant with methemoglobin reductase deficiency, and possibly even a heterozygote, would be unusually vulnerable.

Maran et al. (2005) reported 3 unrelated patients with acquired methemoglobinemia and no mutations in the CYB5R3 gene. One was an infant with age-related decreased CYB5R3 activity (60%) and 35% methemoglobin. The infant had 1 week of a diarrheal illness and required several administrations of methylene blue. Another patient developed methemoglobinemia upon exposure to lidocaine, and the third patient, who had 44% methemoglobin, had an unidentified toxin or infection.


Biochemical Features

West et al. (1967) provided electrophoretic evidence of anomalous enzyme structure of NADH diaphorase (the former name of CYB5R3; Percy and Lappin, 2008) in a case of methemoglobinemia. West et al. (1967) noted that electrophoretic variants of NADH diaphorase without methemoglobinemia have also been found, with a family pattern consistent with codominant inheritance.

By electrophoresis, Bloom and Zarkowsky (1969) described 3 varieties of the NADH diaphorase enzyme in patients with methemoglobinemia: total absence of detectable enzyme activity, decreased quantities of presumably normal enzyme, and decreased quantities of structurally variant enzyme. They added 2 new structural variants of NADH-methemoglobin reductase to the one originally described by Kaplan and Beutler (1967).


Diagnosis

Prenatal Diagnosis

Kaftory et al. (1986) made the prenatal diagnosis of congenital methemoglobinemia with mental retardation by demonstration of an almost complete deficiency of cytochrome b5 reductase activity in cultured amniotic fluid cells.


Clinical Management

Treatment with methylene blue (100-300 mg orally per day) or ascorbic acid (500 mg a day) is of cosmetic value (Waller, 1970). Methylene blue stimulates production of reduced NADPH through the pentose phosphate pathway in red blood cells (Percy and Lappin, 2008).

Karadsheh et al. (2001) reported a patient with coexisting glucose-6-phosphate deficiency (300908) and CYB5R3 deficiency. He developed metoclopramide-induced methemoglobinemia that did not respond to methylene blue treatment. This was because G6PD patients have blockage of the pentose phosphate pathway, which generates NADPH.


Molecular Genetics

In a 3-year-old Chinese girl with type I methemoglobinemia, Wu et al. (1998) identified a homozygous mutation in the CYB5R3 gene (L73P; 613213.0013).

In an Italian girl with severe type II methemoglobinemia, Shirabe et al. (1995) identified a homozygous mutation in the CYB5R3 gene (613213.0005).

In a 4-year-old boy with type II methemoglobinemia, Owen et al. (1997) identified a homozygous splice site mutation in the CYB5R3 gene that resulted in the deletion of exon 6 (613213.0012).

Maran et al. (2005) reported 4 unrelated patients with recessive methemoglobinemia: 2 with type I and 2 with type II. Four different mutations in the CYB5R3 gene were identified (see, e.g., 613213.0008 and 613213.0012).


Population Genetics

The enzymatic type of methemoglobinemia has unprecedentedly high frequency in the Athabaskan Indians (Eskimos) of Alaska (Scott, 1960; Scott et al., 1963). Balsamo et al. (1964) also observed CYB5R3 deficiency in Navajo Indians. Since the Navajo Indians and the Athabaskan Indians of Alaska are the same linguistic stock, the finding may illustrate the usefulness of rare recessive genes in tracing relationships of ethnic groups.

Following up on an observation of an unusually high proportion of Algerian subjects among patients with methemoglobinemia, Reghis et al. (1981) did a population survey of red cell cytochrome b5 reductase in 1,000 Algerian subjects. In 16, the activity of the enzyme was diminished by about 50%. The relatively high frequency of the deficiency allele was found in subjects of Kabyle origin.


Nomenclature

Jaffe (1987) stated that the enzyme can be called cytochrome b5 reductase (dropping the NADH prefix) and the disorder can be called 'enzymopenic methemoglobinemia.'


History

Methemoglobinemia, although not usually considered an inborn error of metabolism in the strict garrodian sense, was the first hereditary trait in which a specific enzyme deficiency was identified (Gibson, 1948). (Type I glycogen storage disease (232200) is usually listed as the first disorder in which a specific enzymopathy was identified, by Cori and Cori, 1952).

Gibson (1993) gave a delightful account of his work on the enzyme defect in methemoglobinemia in Belfast, Northern Ireland. The patients he studied were 2 brothers, Russell and Fred Martin from Banbridge in Northern Ireland, in whom Dr. James Deeny, a local practitioner with early enthusiasm for ascorbic acid in the treatment of heart disease, had demonstrated the benefit of vitamin C (Deeny et al., 1943). The brothers had a blue appearance. When Russell was treated with vitamin C, he turned pink. Although Deeny assumed that he had corrected an underlying heart condition, cardiologists could find no cardiac abnormality in either brother. The physiologist Henry Barcroft carried out a detailed study of these cases during treatment and found raised levels of methemoglobin (Barcroft et al., 1945). Quentin Gibson (then of Queen's University, Belfast, Ireland) correctly identified the pathway involved in the reduction of methemoglobin in the family, thereby describing the first hereditary trait involving a specific enzyme deficiency (Gibson, 1948). See also the personal account of Gibson (2002).

Trost (1982) gave a popular account of the 'blue Fugates' of Kentucky and the studies of them by Cawein et al. (1964).

Early Reports of Possible Other Defects Causing Methemoglobinemia

Townes and Morrison (1962) reported biochemical studies of a variant of autosomal recessive methemoglobinemia. NADH-methemoglobin reductase (CYB5R3) activity of red cells was in the normal range and hemoglobin was apparently normal. Methemoglobin reduction in intact red cells was very low with glucose as the substrate, but normal with lactate. Intracellular glutathione was also low. Townes and Morrison (1962) postulated that the defect might be inadequate NADH formation resulting from decreased glutathione synthesis. However, this may have represented a basically different form of methemoglobinemia.

Muller et al. (1963) described 3 sibs with methemoglobinemia. Laboratory studies showed a deficient ability of erythrocytes to utilize glucose for methemoglobin reduction, but normal reduction of lactate. They suggested that their family had a hereditary deficiency of NADPH methaemoglobin reductase (CYB5R4; 608343). A deficiency of NADPH has never been reported.

Ozsoylu (1967) reported enzyme-deficiency methemoglobinemia in 3 generations and proposed dominant inheritance. However, consanguinity was present to account for a quasi-dominant pattern. The author thought this possibility was excluded by normal enzyme activity in individuals who would need to be heterozygotes to account for the pattern.


REFERENCES

  1. Aalfs, C. M., Salieb-Beugelaar, G. B., Wanders, R. J. A., Mannens, M. M. A. M., Wijburg, F. A. A case of methemoglobinemia type II due to NADH-cytochrome b5 reductase deficiency: determination of the molecular basis. Hum. Mutat. 16: 18-22, 2000. [PubMed: 10874300, related citations] [Full Text]

  2. Balsamo, P., Hardy, W. R., Scott, E. M. Hereditary methemoglobinemia due to diaphorase deficiency in Navajo Indians. J. Pediat. 65: 928-930, 1964. [PubMed: 14244100, related citations] [Full Text]

  3. Barcroft, H., Gibson, Q. H., Harrison, D. C., McMurray, J. Familial idiopathic methaemoglobinaemia and its treatment with ascorbic acid. Clin. Sci. 5: 145-157, 1945. [PubMed: 21011935, related citations]

  4. Bloom, G. E., Zarkowsky, H. S. Heterogeneity of the enzyme defect in congenital methemoglobinemia. New Eng. J. Med. 281: 919-922, 1969. [PubMed: 4390269, related citations] [Full Text]

  5. Board, P. G., Pidcock, M. E. Methaemoglobinaemia resulting from heterozygosity for two NADH-methaemoglobin reductase variants: characterization as NADH-ferricyanide reductase. Brit. J. Haemat. 47: 361-370, 1981. [PubMed: 6893938, related citations] [Full Text]

  6. Cawein, M. J., Behlen, C. H., Lappat, E. J., Cohn, J. E. Hereditary diaphorase deficiency and methemoglobinemia. Arch. Intern. Med. 113: 578-585, 1964. [PubMed: 14109019, related citations] [Full Text]

  7. Choury, D., Leroux, A., Kaplan, J.-C. Membrane-bound cytochrome b5 reductase (methemoglobin reductase) in human erythrocytes: study in normal and methemoglobinemic subjects. J. Clin. Invest. 67: 149-155, 1981. [PubMed: 7451647, related citations] [Full Text]

  8. Cohen, R. J., Sachs, J. R., Wicker, D. J., Conrad, M. E. Methemoglobinemia provoked by malarial chemoprophylaxis in Vietnam. New Eng. J. Med. 279: 1127-1131, 1968. [PubMed: 5686480, related citations] [Full Text]

  9. Comly, H. H. Cyanosis in infants caused by nitrates in well water. JAMA 129: 112-116, 1945.

  10. Cori, G. T., Cori, C. F. Glucose-6-phosphatase of the liver in glycogen storage disease. J. Biol. Chem. 199: 661-667, 1952. [PubMed: 13022673, related citations]

  11. Deeny, J., Murdock, E. T., Rogan, J. J. Familial idiopathic methaemoglobinaemia with a note on the treatment of two cases with ascorbic acid. Brit. Med. J. I: 721-723, 1943.

  12. Fialkow, P. J., Browder, J. A., Sparkes, R. S., Motulsky, A. G. Mental retardation in methemoglobinemia due to diaphorase deficiency. New Eng. J. Med. 273: 840-845, 1965. [PubMed: 4378489, related citations] [Full Text]

  13. Gibson, Q. H. The reduction of methaemoglobin in red blood cells and studies on the cause of idiopathic methaemoglobinaemia. Biochem. J. 42: 13-23, 1948. [PubMed: 16748235, related citations] [Full Text]

  14. Gibson, Q. H. Methemoglobinemia--long ago and far away. Am. J. Hemat. 42: 3-6, 1993. [PubMed: 8416293, related citations] [Full Text]

  15. Gibson, Q. Introduction: congenital methemoglobinemia revisited. (Letter) Blood 100: 3445-3446, 2002. [PubMed: 12411314, related citations] [Full Text]

  16. Gonzalez, R., Estrada, M., Wade, M., de la Torre, E., Svarch, E., Fernandez, O., Oritz, R., Guzman, E., Colombo, B. Heterogeneity of hereditary methaemoglobinaemia: a study of 4 Cuban families with NADH-methaemoglobin reductase deficiency including a new variant (Santiage de Cuba variant). Scand. J. Haemat. 20: 385-393, 1978. [PubMed: 663552, related citations] [Full Text]

  17. Hirano, M., Matsuki, T., Tanishima, K., Takeshita, M., Shimizu, S., Nagamura, Y., Yoneyama, Y. Congenital methaemoglobinaemia due to NADH methaemoglobin reductase deficiency: successful treatment with oral riboflavin. Brit. J. Haemat. 47: 353-359, 1981. [PubMed: 6893937, related citations] [Full Text]

  18. Hitzenberger, K. Autotoxic cyanosis due to intraglobular methemoglobinemia. Wien. Arch. Med. 23: 85-96, 1932.

  19. Hsieh, H.-S., Jaffe, E. R. Electrophoretic and functional variants of NADH-methemoglobin reductase in hereditary methemoglobinemia. J. Clin. Invest. 50: 196-202, 1971. [PubMed: 5543874, related citations] [Full Text]

  20. Jaffe, E. R., Hsieh, H. S. DPNH-methemoglobin reductase deficiency and hereditary methemoglobinemia. Semin. Hemat. 8: 417-437, 1971. [PubMed: 4333562, related citations]

  21. Jaffe, E. R. The reduction of methemoglobin in erythrocytes of a patient with congenital methemoglobinemia, subjects with erythrocyte glucose-6-phosphate dehydrogenase deficiency, and normal individuals. Blood 21: 561-572, 1963. [PubMed: 13964447, related citations]

  22. Jaffe, E. R. Enzymopenic hereditary methemoglobinemia: a clinical/biochemical classification. Blood Cells 12: 81-90, 1986. [PubMed: 3539237, related citations]

  23. Jaffe, E. R. Personal Communication. Bronx, N. Y. 8/5/1987.

  24. Johnson, C. J., Bonrud, P. A., Dosch, T. L., Kilness, A. W., Senger, K. A., Busch, D. C., Meyer, M. R. Fatal outcome of methemoglobinemia in an infant. JAMA 257: 2796-2797, 1987. [PubMed: 3573274, related citations]

  25. Junien, C., Leroux, A., Lostanlen, D., Reghis, A., Boue, J., Nicolas, H., Boue, A., Kaplan, J. C. Prenatal diagnosis of congenital enzymopenic methaemoglobinaemia with mental retardation due to generalized cytochrome b5 reductase deficiency: first report of two cases. Prenatal Diag. 1: 17-24, 1981. [PubMed: 7346809, related citations] [Full Text]

  26. Kaftory, A., Freundlich, E., Manaster, J., Shukri, A., Hegesh, E. Prenatal diagnosis of congenital methemoglobinemia with mental retardation. Isr. J. Med. Sci. 22: 837-840, 1986. [PubMed: 3793441, related citations]

  27. Kaplan, J. C., Beutler, E. Electrophoresis of red cell NADH- and NADPH-diaphorases in normal subjects and patients with congenital methemoglobinemia. Biochem. Biophys. Res. Commun. 29: 605-610, 1967. [PubMed: 16496543, related citations] [Full Text]

  28. Kaplan, J. C., Leroux, A., Beauvais, P. Formes cliniques et biologiques du deficit en cytochrome b5 reductase. C. R. Seances Soc. Biol. Fil. 173: 368-379, 1979. [PubMed: 159760, related citations]

  29. Karadsheh, N. S., Shaker, Q., Ratroat, B. Metoclopramide-induced methemoglobinemia in a patient with co-existing deficiency of glucose-6-phosphate dehydrogenase and NADH-cytochrome b5 reductase: failure of methylene blue treatment. (Letter) Haematologica 86: 659 only, 2001. [PubMed: 11418378, related citations]

  30. Katsube, T., Sakamoto, N., Kobayashi, Y., Seki, R., Hirano, M., Tanishima, K., Tomoda, A., Takazakura, E., Yubisui, T., Takeshita, M., Sakaki, Y., Fukumaki, Y. Exonic point mutations in NADH-cytochrome B5 reductase genes of homozygotes for hereditary methemoglobinemia, types I and III: putative mechanisms of tissue-dependent enzyme deficiency. Am. J. Hum. Genet. 48: 799-808, 1991. [PubMed: 1707593, related citations]

  31. Lawson, D. L., Miale, T. D., Harvey, J. L., Bucciarelli, R. L., Nelson, L. S. Leukocyte diaphorase deficiency in congenital methemoglobinemia: a valuable prognostic indicator. Biol. Neonate 32: 193-196, 1977. [PubMed: 603804, related citations] [Full Text]

  32. Leroux, A., Junien, C., Kaplan, J.-C., Bamberger, J. Generalised deficiency of cytochrome b5 reductase in congenital methaemoglobinaemia with mental retardation. Nature 258: 619-620, 1975. [PubMed: 1207738, related citations] [Full Text]

  33. Lostanlen, D., Lenoir, G., Kaplan, J.-C. NADH-cytochrome b5 reductase activity in lymphoid cell lines: expression of the defect in Epstein-Barr virus transformed lymphoblastoid cell lines from patients with recessive congenital methemoglobinemia. J. Clin. Invest. 68: 279-285, 1981. [PubMed: 6265499, related citations] [Full Text]

  34. Maran, J., Guan, Y., Ou, C.-N., Prchal, J. T. Heterogeneity of the molecular biology of methemoglobinemia: a study of eight consecutive patients. (Letter) Haematologica 90: 687-689, 2005. [PubMed: 15921385, related citations]

  35. Miyazono, Y., Hirono, A., Miyamoto, Y., Miwa, S. Erythrocyte enzyme activities in cord blood of extremely low-birth-weight infants. Am. J. Hemat. 62: 88-92, 1999. [PubMed: 10509002, related citations] [Full Text]

  36. Muller, J., Murawski, K., Szymanowska, Z., Koziorowski, A., Radwan, L. Hereditary deficiency of NADPH 2-methaemoglobin reductase. Acta Med. Scand. 173: 243-247, 1963. [PubMed: 13936501, related citations] [Full Text]

  37. Nagai, T., Shirabe, K., Yubisui, T., Takeshita, M. Analysis of mutant NADH-cytochrome b5 reductase: apparent 'type III' methemoglobinemia can be explained as type I with an unstable reductase. Blood 81: 808-814, 1993. [PubMed: 8427971, related citations]

  38. Owen, E. P., Berens, J., Marinaki, A. M., Ipp, H., Harley, E. H. Recessive congenital methaemoglobinaemia type II, a new mutation which causes incorrect splicing in the NADH-cytochrome b-5 reductase gene. J. Inherit. Metab. Dis. 20: 610 only, 1997. [PubMed: 9266404, related citations] [Full Text]

  39. Ozsoylu, S. Hereditary methemoglobinemic cyanosis due to diaphorase deficiency in three successive generations. Acta Haemat. 37: 276-283, 1967. [PubMed: 4963515, related citations] [Full Text]

  40. Percy, M. J., Lappin, T. R. Recessive congenital methaemoglobinaemia: cytochrome b5 reductase deficiency. Brit. J. Haemat. 141: 298-308, 2008. [PubMed: 18318771, related citations] [Full Text]

  41. Reghis, A., Benabadji, M., Tchen, P., Kaplan, J. C. Quantitative variations of red-cell cytochrome b5 reductase (NADH-methemoglobin-reductase) in the Algerian population: evidence for defective alleles. Hum. Genet. 59: 148-153, 1981. [PubMed: 7327574, related citations] [Full Text]

  42. Reghis, A., Troungos, C., Lostanlen, D., Krishnamoorthy, R., Kaplan, J. C. Characterization of weak alleles at the DIA1 locus (Mustapha 1, Mustapha 2, and Mustapha 3) in the Algerian population. Hum. Genet. 64: 173-175, 1983. [PubMed: 6885054, related citations] [Full Text]

  43. Rossi, E. C., Bryan, G. T., Schilling, R. F., Clatanoff, D. V. Remission of chronic methemoglobinemia following neomycin therapy. Am. J. Med. 40: 440-447, 1966.

  44. Schwartz, J. M., Paress, P. S., Ross, J. M., Dipillo, F., Rizek, R. Unstable variant of NADH methemoglobin reductase in Puerto Ricans with hereditary methemoglobinemia. J. Clin. Invest. 51: 1594-1601, 1972. [PubMed: 4336945, related citations] [Full Text]

  45. Scott, E. M., Lewis, M., Kaita, H., Chown, B., Giblett, E. R. The absence of close linkage of methemoglobinemia and blood group loci. Am. J. Hum. Genet. 15: 493-494, 1963. [PubMed: 14097243, related citations]

  46. Scott, E. M. The relationship of diaphorase of human erythrocytes to inheritance of methemoglobinemia. J. Clin. Invest. 39: 1176-1179, 1960. [PubMed: 14444209, related citations] [Full Text]

  47. Shirabe, K., Landi, M. T., Takeshita, M., Uziel, G., Fedrizzi, E., Borgese, N. A novel point mutation in a 3-prime splice site of the NADH-cytochrome b5 reductase gene results in immunologically undetectable enzyme and impaired NADH-dependent ascorbate regeneration in cultured fibroblasts of a patient with type II hereditary methemoglobinemia. Am. J. Hum. Genet. 57: 302-310, 1995. [PubMed: 7668255, related citations]

  48. Tanishima, K., Matsuki, T., Fukuda, N., Takeshita, M., Yoneyama, Y. NADH-cytochrome b5 reductase in platelets and leukocytes with special reference to normal levels and to levels in carriers of hereditary methemoglobinemia with or without neurological symptoms. Acta Haemat. 63: 7-12, 1980. [PubMed: 6768212, related citations] [Full Text]

  49. Tanishima, K., Tanimoto, K., Tomoda, A., Mawatari, K., Matsukawa, S., Yoneyama, Y., Ohkuwa, H., Takazakura, E. Hereditary methemoglobinemia due to cytochrome b(5) reductase deficiency in blood cells without associated neurologic and mental disorders. Blood 66: 1288-1291, 1985. [PubMed: 4063522, related citations]

  50. Townes, P. L., Morrison, M. Investigation of the defect in a variant of hereditary methemoglobinemia. Blood 19: 60-74, 1962. [PubMed: 13922201, related citations]

  51. Trost, C. The Blue People of Troublesome Creek. Science 82 (Nov.): 35-39, 1982.

  52. Vieira, L. M., Kaplan, J.-C., Kahn, A., Leroux, A. Four new mutations in the NADH-cytochrome b5 reductase gene from patients with recessive congenital methemoglobinemia type II. Blood 85: 2254-2262, 1995. [PubMed: 7718898, related citations]

  53. Vives-Corrons, J. L., Pujades, A., Vela, E., Corretger, J. M., Leroux, A., Kaplan, J. C. Congenital methemoglobin-reductase (cytochrome b5 reductase) deficiency associated with mental retardation in a Spanish girl. Acta Haemat. 59: 348-353, 1978. [PubMed: 97893, related citations] [Full Text]

  54. Waller, H. D. Inherited methemoglobinemia (enzyme deficiencies). Humangenetik 9: 217-218, 1970. [PubMed: 4393777, related citations] [Full Text]

  55. West, C. A., Gomperts, B. D., Huehns, E. R., Kessel, I., Ashby, J. R. Demonstration of an enzyme variant in a case of congenital methaemoglobinaemia. Brit. Med. J. 4: 212-214, 1967. [PubMed: 6061565, related citations] [Full Text]

  56. Worster-Drought, C., White, J. C., Sargent, F. Familial, idiopathic methaemoglobinaemia associated with mental deficiency and neurological abnormalities. Brit. Med. J. 2: 114-118, 1953. [PubMed: 13059406, related citations] [Full Text]

  57. Wright, R. O., Lewander, W. J., Woolf, A. D. Methemoglobinemia: etiology, pharmacology, and clinical management. Ann. Emerg. Med. 34: 646-656, 1999. [PubMed: 10533013, related citations] [Full Text]

  58. Wu, Y.-S., Huang, C.-H., Wan, Y., Huang, Q.-J., Zhu, Z.-Y. Identification of a novel point mutation (leu72-to-pro) in the NADH-cytochrome b5 reductase gene of a patient with hereditary methaemoglobinaemia type I. Brit. J. Haemat. 102: 575-577, 1998. [PubMed: 9695975, related citations] [Full Text]


Cassandra L. Kniffin - reorganized : 1/20/2010
Cassandra L. Kniffin - updated : 1/13/2010
Cassandra L. Kniffin - updated : 10/17/2005
Victor A. McKusick - updated : 1/27/2003
Victor A. McKusick - updated : 4/3/2001
Victor A. McKusick - updated : 8/24/2000
Victor A. McKusick - updated : 8/17/2000
Victor A. McKusick - updated : 3/11/1999
Victor A. McKusick - updated : 2/12/1998
Victor A. McKusick - updated : 12/10/1997
Mark H. Paalman - updated : 4/17/1997
Victor A. McKusick - updated : 2/17/1997
Stylianos E. Antonarakis - updated : 7/4/1996
Creation Date:
Victor A. McKusick : 6/24/1986
carol : 05/20/2019
carol : 05/14/2018
alopez : 09/16/2016
carol : 05/27/2016
alopez : 8/11/2015
alopez : 5/21/2015
carol : 2/23/2015
carol : 10/24/2013
terry : 10/12/2010
ckniffin : 4/8/2010
carol : 4/8/2010
carol : 2/24/2010
carol : 2/22/2010
carol : 1/20/2010
ckniffin : 1/13/2010
ckniffin : 1/13/2010
joanna : 9/4/2009
terry : 6/3/2009
carol : 3/20/2009
terry : 11/15/2006
wwang : 10/26/2005
ckniffin : 10/17/2005
wwang : 4/8/2005
carol : 3/17/2004
mgross : 12/16/2003
ckniffin : 7/8/2003
carol : 6/10/2003
terry : 5/16/2003
ckniffin : 2/28/2003
cwells : 1/27/2003
tkritzer : 1/21/2003
carol : 3/29/2002
terry : 6/6/2001
cwells : 4/9/2001
cwells : 4/4/2001
mcapotos : 4/3/2001
mcapotos : 8/30/2000
mcapotos : 8/29/2000
mcapotos : 8/29/2000
carol : 8/28/2000
terry : 8/24/2000
carol : 8/18/2000
carol : 8/18/2000
terry : 8/17/2000
carol : 3/16/1999
terry : 3/11/1999
carol : 7/30/1998
terry : 6/4/1998
mark : 2/18/1998
terry : 2/12/1998
mark : 12/17/1997
terry : 12/10/1997
terry : 12/10/1997
alopez : 4/17/1997
mark : 4/17/1997
mark : 2/17/1997
terry : 2/11/1997
carol : 7/4/1996
terry : 7/1/1996
mark : 9/13/1995
davew : 7/26/1994
carol : 4/20/1994
mimadm : 4/18/1994
warfield : 4/15/1994
carol : 5/13/1993

# 250800

METHEMOGLOBINEMIA DUE TO DEFICIENCY OF METHEMOGLOBIN REDUCTASE


Alternative titles; symbols

NADH-DEPENDENT METHEMOGLOBIN REDUCTASE DEFICIENCY
NADH-CYTOCHROME b5 REDUCTASE DEFICIENCY
METHEMOGLOBINEMIA, CONGENITAL, AUTOSOMAL RECESSIVE


Other entities represented in this entry:

METHEMOGLOBINEMIA, TYPE I, INCLUDED
METHEMOGLOBINEMIA, TYPE II, INCLUDED
NADH-CYTOCHROME b5 REDUCTASE DEFICIENCY, TYPE I, INCLUDED
NADH-CYTOCHROME b5 REDUCTASE DEFICIENCY, TYPE II, INCLUDED

SNOMEDCT: 29914000;   ORPHA: 621;  


Phenotype-Gene Relationships

Location Phenotype Phenotype
MIM number
Inheritance Phenotype
mapping key
Gene/Locus Gene/Locus
MIM number
22q13.2 Methemoglobinemia, type II 250800 Autosomal recessive 3 CYB5R3 613213
22q13.2 Methemoglobinemia, type I 250800 Autosomal recessive 3 CYB5R3 613213

TEXT

A number sign (#) is used with this entry because autosomal recessive methemoglobinemia due to deficiency of methemoglobin reductase is caused by homozygous or compound heterozygous mutation in the CYB5R3 gene (613213) on chromosome 22q13.

See also autosomal recessive methemoglobinemia type IV (250790), which is caused by mutation in the cytochrome b5 gene (CYB5A; 613218). Type III has been withdrawn (see below and Nagai et al., 1993).

Autosomal dominant methemoglobinemia, referred to as the 'M' type, is caused by variation in the hemoglobin A (HBA1; 141800) or hemoglobin B (HBB; 141900) genes; see 617973 and 617971, respectively.


Description

Methemoglobinemia due to NADH-cytochrome b5 reductase deficiency is an autosomal recessive disorder characterized clinically by decreased oxygen carrying capacity of the blood, with resultant cyanosis and hypoxia (review by Percy and Lappin, 2008).

There are 2 types of methemoglobin reductase deficiency. In type I, the defect affects the soluble form of the enzyme, is restricted to red blood cells, and causes well-tolerated methemoglobinemia. In type II, the defect affects both the soluble and microsomal forms of the enzyme and is thus generalized, affecting red cells, leukocytes, and all body tissues. Type II methemoglobinemia is associated with mental deficiency and other neurologic symptoms. The neurologic symptoms may be related to the major role played by the cytochrome b5 system in the desaturation of fatty acids (Vives-Corrons et al., 1978; Kaplan et al., 1979).


Clinical Features

Gibson (1948) and Barcroft et al. (1945) correctly concluded that erythrocytes from affected individuals with methemoglobinemia were unable to reduce methemoglobin that is formed continuously at a normal rate under physiologic conditions. Gibson (1948) is credited with identifying this disorder as an enzymatic defect in a reductase (see HISTORY below). Increased circulating levels of methemoglobin, which is brown, give the skin a bluish color, which appears as cyanosis. In the normal state, about 1% of hemoglobin exists as methemoglobin; individuals become symptomatic when methemoglobin levels rise above 25% (Jaffe, 1986). Vascular collapse, coma, and death can occur when methemoglobin approaches 70% of total hemoglobin (review by Percy and Lappin, 2008).

Methemoglobinemia Type I

Tanishima et al. (1985) reported 2 Japanese brothers, born of consanguineous parents, with hereditary methemoglobinemia due to cytochrome b5 reductase deficiency. Katsube et al. (1991) provided follow-up of this family. The brothers, who were 24 and 26 years old, had moderate cyanosis without any evidence of neurologic involvement. Initial laboratory studies (Tanishima et al., 1985) showed lack of CYB5R3 enzyme activity in erythrocytes, leukocytes, and platelets. However, enzyme activity was not deficient in nonhematopoietic cells. Thus, the cases did not belong to either the classic erythrocytic or the generalized type, and was tentatively designated 'type III.' A study of relatives showed intermediate enzyme activity, consistent with heterozygosity. Tanishima et al. (1985) concluded that diagnosis by tissues other than blood cells may be important. Katsube et al. (1991) identified a homozygous mutation in the CYB5R3 gene (L149P; 613213.0003) in these patients. Further biochemical studies of these patients by Nagai et al. (1993) revealed that they did have residual enzyme activity in white blood cells, indicating that they actually had type I methemoglobinemia. As this was the only family reported with methemoglobinemia type III, that designation was shown not to exist.

Wu et al. (1998) reported a 3-year-old Chinese girl with type I methemoglobinemia. The patient was born after normal pregnancy and delivery. From the age of 1 month she appeared persistently cyanosed, but without mental or neurologic abnormalities, and her respiratory and cardiac functions were normal. The concentration of methemoglobin was 15%, and NADH-cytochrome b5R activity in erythrocytes was decreased. Her 5-year-old brother had the same symptoms, with 14.5% methemoglobin and decreased b5R activity. The unaffected parents had heterozygous levels of enzyme activity in red cells (about 65% of normal controls).

Methemoglobinemia Type II

Mental deficiency occurs only with the generalized enzyme-deficient form of the disorder, now known as type II (Hitzenberger, 1932; Worster-Drought et al., 1953; Jaffe, 1963).

Leroux et al. (1975) reported methemoglobinemia and mental retardation in patients with generalized deficiency of cytochrome b5 reductase. Lawson et al. (1977) also concluded that low leukocyte diaphorase correlates with mental retardation, a variable feature. The clinical picture in the neurologic form was reviewed by Jaffe and Hsieh (1971).

Shirabe et al. (1995) reported a girl, born of Italian second-cousin parents, with type II methemoglobinemia. She appeared cyanotic from the first days of life. In addition, the first months of life were characterized by feeding difficulties, failure to thrive, and psychomotor developmental delay. Therapy with ascorbate did not improve her neurologic condition. At 1 year of age, she had severe spastic and dystonic quadriparesis with hyperkinetic involuntary movements, severe microcephaly, and very simple and primitive reactions to environmental changes. A few months later, she developed generalized tonic seizures and myoclonic jerks that were not responsive to common antiepileptic drugs. At the age of 9 years, the patient was in a vegetative status. There was complete absence of immunologically detectable CYB5R3 enzyme in blood cells and skin fibroblasts. Cultured fibroblasts of the patient showed severely reduced NADH-dependent cytochrome c reductase, ferricyanide reductase, and semidehydroascorbate reductase activities.

Vieira et al. (1995) reported an Algerian patient with methemoglobinemia type II. The patient had profound mental retardation, microcephaly, and bilateral athetosis associated with cyanosis and absent CYB5R3 enzyme activities in erythrocytes, lymphocytes, and lymphoblastoid cell lines. Genetic analysis identified a homozygous nonsense mutation in the CYB5R3 gene (R219X; 613213.0007).

Owen et al. (1997) reported a 4-year-old boy with type II methemoglobinemia. He had dystonic athetoid cerebral palsy with mental retardation and microcephaly. He was found to have 60% methemoglobinemia that was persistent but responded to ascorbic acid treatment.

Aalfs et al. (2000) reported a child, born of healthy, unrelated Hindustani Suriname parents, with type II methemoglobinemia. She was born small for gestational age. Central cyanosis was noted shortly after birth. She had severe psychomotor retardation and microcephaly. Neurologic features included athetoid movements, generalized hypertonia, epilepsy, and a complete head lag. At 6 years of age, MRI of the brain demonstrated frontal and bitemporal cortical atrophy, cerebellar atrophy, retarded myelinization, and hypoplasia of the basal ganglia. There was almost no psychomotor development and she developed spastic tetraplegia with scoliosis. The patient died at the age of 8 years. Genetic analysis identified compound heterozygosity for 2 nonsense mutations in the CYB5R3 gene (Q77X; 613213.0014 and R160X; 613213.0015).

Enterogenous Methemoglobinemia

Neonates have only about 60% of normal adult levels of CYB5R3 and do not attain mature levels before 2 months of age (Wright et al., 1999). Low-birth-weight neonates have low levels of erythrocyte CYB5R3 (Miyazono et al., 1999). Thus, even infants without CYB5R3 mutations are at risk of developing methemoglobinemia if exposed to strong oxidizing agents, such as drugs.

Enterogenous methemoglobinemia might be confused with the genetic form. Rossi et al. (1966) described a patient with chronic methemoglobinemia for 14 years whose disorder was resolved by a course of neomycin.

Cohen et al. (1968) suggested that methemoglobinemia induced by malarial prophylaxis, such as chloroquine, primaquine and diamino-diphenylsulfone, could be an indication of the presence of the heterozygous state. In a historic article, Comly (1945) reported cyanosis in infants caused by nitrates in well water, which could easily be confused with cyanotic congenital heart disease and at times He could be fatal (Johnson et al., 1987). This continues to be a problem in rural areas. Presumably, an infant with methemoglobin reductase deficiency, and possibly even a heterozygote, would be unusually vulnerable.

Maran et al. (2005) reported 3 unrelated patients with acquired methemoglobinemia and no mutations in the CYB5R3 gene. One was an infant with age-related decreased CYB5R3 activity (60%) and 35% methemoglobin. The infant had 1 week of a diarrheal illness and required several administrations of methylene blue. Another patient developed methemoglobinemia upon exposure to lidocaine, and the third patient, who had 44% methemoglobin, had an unidentified toxin or infection.


Biochemical Features

West et al. (1967) provided electrophoretic evidence of anomalous enzyme structure of NADH diaphorase (the former name of CYB5R3; Percy and Lappin, 2008) in a case of methemoglobinemia. West et al. (1967) noted that electrophoretic variants of NADH diaphorase without methemoglobinemia have also been found, with a family pattern consistent with codominant inheritance.

By electrophoresis, Bloom and Zarkowsky (1969) described 3 varieties of the NADH diaphorase enzyme in patients with methemoglobinemia: total absence of detectable enzyme activity, decreased quantities of presumably normal enzyme, and decreased quantities of structurally variant enzyme. They added 2 new structural variants of NADH-methemoglobin reductase to the one originally described by Kaplan and Beutler (1967).


Diagnosis

Prenatal Diagnosis

Kaftory et al. (1986) made the prenatal diagnosis of congenital methemoglobinemia with mental retardation by demonstration of an almost complete deficiency of cytochrome b5 reductase activity in cultured amniotic fluid cells.


Clinical Management

Treatment with methylene blue (100-300 mg orally per day) or ascorbic acid (500 mg a day) is of cosmetic value (Waller, 1970). Methylene blue stimulates production of reduced NADPH through the pentose phosphate pathway in red blood cells (Percy and Lappin, 2008).

Karadsheh et al. (2001) reported a patient with coexisting glucose-6-phosphate deficiency (300908) and CYB5R3 deficiency. He developed metoclopramide-induced methemoglobinemia that did not respond to methylene blue treatment. This was because G6PD patients have blockage of the pentose phosphate pathway, which generates NADPH.


Molecular Genetics

In a 3-year-old Chinese girl with type I methemoglobinemia, Wu et al. (1998) identified a homozygous mutation in the CYB5R3 gene (L73P; 613213.0013).

In an Italian girl with severe type II methemoglobinemia, Shirabe et al. (1995) identified a homozygous mutation in the CYB5R3 gene (613213.0005).

In a 4-year-old boy with type II methemoglobinemia, Owen et al. (1997) identified a homozygous splice site mutation in the CYB5R3 gene that resulted in the deletion of exon 6 (613213.0012).

Maran et al. (2005) reported 4 unrelated patients with recessive methemoglobinemia: 2 with type I and 2 with type II. Four different mutations in the CYB5R3 gene were identified (see, e.g., 613213.0008 and 613213.0012).


Population Genetics

The enzymatic type of methemoglobinemia has unprecedentedly high frequency in the Athabaskan Indians (Eskimos) of Alaska (Scott, 1960; Scott et al., 1963). Balsamo et al. (1964) also observed CYB5R3 deficiency in Navajo Indians. Since the Navajo Indians and the Athabaskan Indians of Alaska are the same linguistic stock, the finding may illustrate the usefulness of rare recessive genes in tracing relationships of ethnic groups.

Following up on an observation of an unusually high proportion of Algerian subjects among patients with methemoglobinemia, Reghis et al. (1981) did a population survey of red cell cytochrome b5 reductase in 1,000 Algerian subjects. In 16, the activity of the enzyme was diminished by about 50%. The relatively high frequency of the deficiency allele was found in subjects of Kabyle origin.


Nomenclature

Jaffe (1987) stated that the enzyme can be called cytochrome b5 reductase (dropping the NADH prefix) and the disorder can be called 'enzymopenic methemoglobinemia.'


History

Methemoglobinemia, although not usually considered an inborn error of metabolism in the strict garrodian sense, was the first hereditary trait in which a specific enzyme deficiency was identified (Gibson, 1948). (Type I glycogen storage disease (232200) is usually listed as the first disorder in which a specific enzymopathy was identified, by Cori and Cori, 1952).

Gibson (1993) gave a delightful account of his work on the enzyme defect in methemoglobinemia in Belfast, Northern Ireland. The patients he studied were 2 brothers, Russell and Fred Martin from Banbridge in Northern Ireland, in whom Dr. James Deeny, a local practitioner with early enthusiasm for ascorbic acid in the treatment of heart disease, had demonstrated the benefit of vitamin C (Deeny et al., 1943). The brothers had a blue appearance. When Russell was treated with vitamin C, he turned pink. Although Deeny assumed that he had corrected an underlying heart condition, cardiologists could find no cardiac abnormality in either brother. The physiologist Henry Barcroft carried out a detailed study of these cases during treatment and found raised levels of methemoglobin (Barcroft et al., 1945). Quentin Gibson (then of Queen's University, Belfast, Ireland) correctly identified the pathway involved in the reduction of methemoglobin in the family, thereby describing the first hereditary trait involving a specific enzyme deficiency (Gibson, 1948). See also the personal account of Gibson (2002).

Trost (1982) gave a popular account of the 'blue Fugates' of Kentucky and the studies of them by Cawein et al. (1964).

Early Reports of Possible Other Defects Causing Methemoglobinemia

Townes and Morrison (1962) reported biochemical studies of a variant of autosomal recessive methemoglobinemia. NADH-methemoglobin reductase (CYB5R3) activity of red cells was in the normal range and hemoglobin was apparently normal. Methemoglobin reduction in intact red cells was very low with glucose as the substrate, but normal with lactate. Intracellular glutathione was also low. Townes and Morrison (1962) postulated that the defect might be inadequate NADH formation resulting from decreased glutathione synthesis. However, this may have represented a basically different form of methemoglobinemia.

Muller et al. (1963) described 3 sibs with methemoglobinemia. Laboratory studies showed a deficient ability of erythrocytes to utilize glucose for methemoglobin reduction, but normal reduction of lactate. They suggested that their family had a hereditary deficiency of NADPH methaemoglobin reductase (CYB5R4; 608343). A deficiency of NADPH has never been reported.

Ozsoylu (1967) reported enzyme-deficiency methemoglobinemia in 3 generations and proposed dominant inheritance. However, consanguinity was present to account for a quasi-dominant pattern. The author thought this possibility was excluded by normal enzyme activity in individuals who would need to be heterozygotes to account for the pattern.


See Also:

Board and Pidcock (1981); Choury et al. (1981); Fialkow et al. (1965); Gonzalez et al. (1978); Hirano et al. (1981); Hsieh and Jaffe (1971); Junien et al. (1981); Lostanlen et al. (1981); Reghis et al. (1983); Schwartz et al. (1972); Tanishima et al. (1980)

REFERENCES

  1. Aalfs, C. M., Salieb-Beugelaar, G. B., Wanders, R. J. A., Mannens, M. M. A. M., Wijburg, F. A. A case of methemoglobinemia type II due to NADH-cytochrome b5 reductase deficiency: determination of the molecular basis. Hum. Mutat. 16: 18-22, 2000. [PubMed: 10874300] [Full Text: https://doi.org/10.1002/1098-1004(200007)16:1<18::AID-HUMU4>3.0.CO;2-N]

  2. Balsamo, P., Hardy, W. R., Scott, E. M. Hereditary methemoglobinemia due to diaphorase deficiency in Navajo Indians. J. Pediat. 65: 928-930, 1964. [PubMed: 14244100] [Full Text: https://doi.org/10.1016/s0022-3476(64)80017-2]

  3. Barcroft, H., Gibson, Q. H., Harrison, D. C., McMurray, J. Familial idiopathic methaemoglobinaemia and its treatment with ascorbic acid. Clin. Sci. 5: 145-157, 1945. [PubMed: 21011935]

  4. Bloom, G. E., Zarkowsky, H. S. Heterogeneity of the enzyme defect in congenital methemoglobinemia. New Eng. J. Med. 281: 919-922, 1969. [PubMed: 4390269] [Full Text: https://doi.org/10.1056/NEJM196910232811702]

  5. Board, P. G., Pidcock, M. E. Methaemoglobinaemia resulting from heterozygosity for two NADH-methaemoglobin reductase variants: characterization as NADH-ferricyanide reductase. Brit. J. Haemat. 47: 361-370, 1981. [PubMed: 6893938] [Full Text: https://doi.org/10.1111/j.1365-2141.1981.tb02803.x]

  6. Cawein, M. J., Behlen, C. H., Lappat, E. J., Cohn, J. E. Hereditary diaphorase deficiency and methemoglobinemia. Arch. Intern. Med. 113: 578-585, 1964. [PubMed: 14109019] [Full Text: https://doi.org/10.1001/archinte.1964.00280100086014]

  7. Choury, D., Leroux, A., Kaplan, J.-C. Membrane-bound cytochrome b5 reductase (methemoglobin reductase) in human erythrocytes: study in normal and methemoglobinemic subjects. J. Clin. Invest. 67: 149-155, 1981. [PubMed: 7451647] [Full Text: https://doi.org/10.1172/JCI110007]

  8. Cohen, R. J., Sachs, J. R., Wicker, D. J., Conrad, M. E. Methemoglobinemia provoked by malarial chemoprophylaxis in Vietnam. New Eng. J. Med. 279: 1127-1131, 1968. [PubMed: 5686480] [Full Text: https://doi.org/10.1056/NEJM196811212792102]

  9. Comly, H. H. Cyanosis in infants caused by nitrates in well water. JAMA 129: 112-116, 1945.

  10. Cori, G. T., Cori, C. F. Glucose-6-phosphatase of the liver in glycogen storage disease. J. Biol. Chem. 199: 661-667, 1952. [PubMed: 13022673]

  11. Deeny, J., Murdock, E. T., Rogan, J. J. Familial idiopathic methaemoglobinaemia with a note on the treatment of two cases with ascorbic acid. Brit. Med. J. I: 721-723, 1943.

  12. Fialkow, P. J., Browder, J. A., Sparkes, R. S., Motulsky, A. G. Mental retardation in methemoglobinemia due to diaphorase deficiency. New Eng. J. Med. 273: 840-845, 1965. [PubMed: 4378489] [Full Text: https://doi.org/10.1056/NEJM196510142731602]

  13. Gibson, Q. H. The reduction of methaemoglobin in red blood cells and studies on the cause of idiopathic methaemoglobinaemia. Biochem. J. 42: 13-23, 1948. [PubMed: 16748235] [Full Text: https://doi.org/10.1042/bj0420013]

  14. Gibson, Q. H. Methemoglobinemia--long ago and far away. Am. J. Hemat. 42: 3-6, 1993. [PubMed: 8416293] [Full Text: https://doi.org/10.1002/ajh.2830420103]

  15. Gibson, Q. Introduction: congenital methemoglobinemia revisited. (Letter) Blood 100: 3445-3446, 2002. [PubMed: 12411314] [Full Text: https://doi.org/10.1182/blood-2002-08-2601]

  16. Gonzalez, R., Estrada, M., Wade, M., de la Torre, E., Svarch, E., Fernandez, O., Oritz, R., Guzman, E., Colombo, B. Heterogeneity of hereditary methaemoglobinaemia: a study of 4 Cuban families with NADH-methaemoglobin reductase deficiency including a new variant (Santiage de Cuba variant). Scand. J. Haemat. 20: 385-393, 1978. [PubMed: 663552] [Full Text: https://doi.org/10.1111/j.1600-0609.1978.tb02472.x]

  17. Hirano, M., Matsuki, T., Tanishima, K., Takeshita, M., Shimizu, S., Nagamura, Y., Yoneyama, Y. Congenital methaemoglobinaemia due to NADH methaemoglobin reductase deficiency: successful treatment with oral riboflavin. Brit. J. Haemat. 47: 353-359, 1981. [PubMed: 6893937] [Full Text: https://doi.org/10.1111/j.1365-2141.1981.tb02802.x]

  18. Hitzenberger, K. Autotoxic cyanosis due to intraglobular methemoglobinemia. Wien. Arch. Med. 23: 85-96, 1932.

  19. Hsieh, H.-S., Jaffe, E. R. Electrophoretic and functional variants of NADH-methemoglobin reductase in hereditary methemoglobinemia. J. Clin. Invest. 50: 196-202, 1971. [PubMed: 5543874] [Full Text: https://doi.org/10.1172/JCI106473]

  20. Jaffe, E. R., Hsieh, H. S. DPNH-methemoglobin reductase deficiency and hereditary methemoglobinemia. Semin. Hemat. 8: 417-437, 1971. [PubMed: 4333562]

  21. Jaffe, E. R. The reduction of methemoglobin in erythrocytes of a patient with congenital methemoglobinemia, subjects with erythrocyte glucose-6-phosphate dehydrogenase deficiency, and normal individuals. Blood 21: 561-572, 1963. [PubMed: 13964447]

  22. Jaffe, E. R. Enzymopenic hereditary methemoglobinemia: a clinical/biochemical classification. Blood Cells 12: 81-90, 1986. [PubMed: 3539237]

  23. Jaffe, E. R. Personal Communication. Bronx, N. Y. 8/5/1987.

  24. Johnson, C. J., Bonrud, P. A., Dosch, T. L., Kilness, A. W., Senger, K. A., Busch, D. C., Meyer, M. R. Fatal outcome of methemoglobinemia in an infant. JAMA 257: 2796-2797, 1987. [PubMed: 3573274]

  25. Junien, C., Leroux, A., Lostanlen, D., Reghis, A., Boue, J., Nicolas, H., Boue, A., Kaplan, J. C. Prenatal diagnosis of congenital enzymopenic methaemoglobinaemia with mental retardation due to generalized cytochrome b5 reductase deficiency: first report of two cases. Prenatal Diag. 1: 17-24, 1981. [PubMed: 7346809] [Full Text: https://doi.org/10.1002/pd.1970010106]

  26. Kaftory, A., Freundlich, E., Manaster, J., Shukri, A., Hegesh, E. Prenatal diagnosis of congenital methemoglobinemia with mental retardation. Isr. J. Med. Sci. 22: 837-840, 1986. [PubMed: 3793441]

  27. Kaplan, J. C., Beutler, E. Electrophoresis of red cell NADH- and NADPH-diaphorases in normal subjects and patients with congenital methemoglobinemia. Biochem. Biophys. Res. Commun. 29: 605-610, 1967. [PubMed: 16496543] [Full Text: https://doi.org/10.1016/0006-291x(67)90529-3]

  28. Kaplan, J. C., Leroux, A., Beauvais, P. Formes cliniques et biologiques du deficit en cytochrome b5 reductase. C. R. Seances Soc. Biol. Fil. 173: 368-379, 1979. [PubMed: 159760]

  29. Karadsheh, N. S., Shaker, Q., Ratroat, B. Metoclopramide-induced methemoglobinemia in a patient with co-existing deficiency of glucose-6-phosphate dehydrogenase and NADH-cytochrome b5 reductase: failure of methylene blue treatment. (Letter) Haematologica 86: 659 only, 2001. [PubMed: 11418378]

  30. Katsube, T., Sakamoto, N., Kobayashi, Y., Seki, R., Hirano, M., Tanishima, K., Tomoda, A., Takazakura, E., Yubisui, T., Takeshita, M., Sakaki, Y., Fukumaki, Y. Exonic point mutations in NADH-cytochrome B5 reductase genes of homozygotes for hereditary methemoglobinemia, types I and III: putative mechanisms of tissue-dependent enzyme deficiency. Am. J. Hum. Genet. 48: 799-808, 1991. [PubMed: 1707593]

  31. Lawson, D. L., Miale, T. D., Harvey, J. L., Bucciarelli, R. L., Nelson, L. S. Leukocyte diaphorase deficiency in congenital methemoglobinemia: a valuable prognostic indicator. Biol. Neonate 32: 193-196, 1977. [PubMed: 603804] [Full Text: https://doi.org/10.1159/000241016]

  32. Leroux, A., Junien, C., Kaplan, J.-C., Bamberger, J. Generalised deficiency of cytochrome b5 reductase in congenital methaemoglobinaemia with mental retardation. Nature 258: 619-620, 1975. [PubMed: 1207738] [Full Text: https://doi.org/10.1038/258619a0]

  33. Lostanlen, D., Lenoir, G., Kaplan, J.-C. NADH-cytochrome b5 reductase activity in lymphoid cell lines: expression of the defect in Epstein-Barr virus transformed lymphoblastoid cell lines from patients with recessive congenital methemoglobinemia. J. Clin. Invest. 68: 279-285, 1981. [PubMed: 6265499] [Full Text: https://doi.org/10.1172/jci110244]

  34. Maran, J., Guan, Y., Ou, C.-N., Prchal, J. T. Heterogeneity of the molecular biology of methemoglobinemia: a study of eight consecutive patients. (Letter) Haematologica 90: 687-689, 2005. [PubMed: 15921385]

  35. Miyazono, Y., Hirono, A., Miyamoto, Y., Miwa, S. Erythrocyte enzyme activities in cord blood of extremely low-birth-weight infants. Am. J. Hemat. 62: 88-92, 1999. [PubMed: 10509002] [Full Text: https://doi.org/10.1002/(sici)1096-8652(199910)62:2<88::aid-ajh4>3.0.co;2-x]

  36. Muller, J., Murawski, K., Szymanowska, Z., Koziorowski, A., Radwan, L. Hereditary deficiency of NADPH 2-methaemoglobin reductase. Acta Med. Scand. 173: 243-247, 1963. [PubMed: 13936501] [Full Text: https://doi.org/10.1111/j.0954-6820.1963.tb16529.x]

  37. Nagai, T., Shirabe, K., Yubisui, T., Takeshita, M. Analysis of mutant NADH-cytochrome b5 reductase: apparent 'type III' methemoglobinemia can be explained as type I with an unstable reductase. Blood 81: 808-814, 1993. [PubMed: 8427971]

  38. Owen, E. P., Berens, J., Marinaki, A. M., Ipp, H., Harley, E. H. Recessive congenital methaemoglobinaemia type II, a new mutation which causes incorrect splicing in the NADH-cytochrome b-5 reductase gene. J. Inherit. Metab. Dis. 20: 610 only, 1997. [PubMed: 9266404] [Full Text: https://doi.org/10.1023/a:1005379730729]

  39. Ozsoylu, S. Hereditary methemoglobinemic cyanosis due to diaphorase deficiency in three successive generations. Acta Haemat. 37: 276-283, 1967. [PubMed: 4963515] [Full Text: https://doi.org/10.1159/000209079]

  40. Percy, M. J., Lappin, T. R. Recessive congenital methaemoglobinaemia: cytochrome b5 reductase deficiency. Brit. J. Haemat. 141: 298-308, 2008. [PubMed: 18318771] [Full Text: https://doi.org/10.1111/j.1365-2141.2008.07017.x]

  41. Reghis, A., Benabadji, M., Tchen, P., Kaplan, J. C. Quantitative variations of red-cell cytochrome b5 reductase (NADH-methemoglobin-reductase) in the Algerian population: evidence for defective alleles. Hum. Genet. 59: 148-153, 1981. [PubMed: 7327574] [Full Text: https://doi.org/10.1007/BF00293065]

  42. Reghis, A., Troungos, C., Lostanlen, D., Krishnamoorthy, R., Kaplan, J. C. Characterization of weak alleles at the DIA1 locus (Mustapha 1, Mustapha 2, and Mustapha 3) in the Algerian population. Hum. Genet. 64: 173-175, 1983. [PubMed: 6885054] [Full Text: https://doi.org/10.1007/BF00327119]

  43. Rossi, E. C., Bryan, G. T., Schilling, R. F., Clatanoff, D. V. Remission of chronic methemoglobinemia following neomycin therapy. Am. J. Med. 40: 440-447, 1966.

  44. Schwartz, J. M., Paress, P. S., Ross, J. M., Dipillo, F., Rizek, R. Unstable variant of NADH methemoglobin reductase in Puerto Ricans with hereditary methemoglobinemia. J. Clin. Invest. 51: 1594-1601, 1972. [PubMed: 4336945] [Full Text: https://doi.org/10.1172/JCI106957]

  45. Scott, E. M., Lewis, M., Kaita, H., Chown, B., Giblett, E. R. The absence of close linkage of methemoglobinemia and blood group loci. Am. J. Hum. Genet. 15: 493-494, 1963. [PubMed: 14097243]

  46. Scott, E. M. The relationship of diaphorase of human erythrocytes to inheritance of methemoglobinemia. J. Clin. Invest. 39: 1176-1179, 1960. [PubMed: 14444209] [Full Text: https://doi.org/10.1172/JCI104131]

  47. Shirabe, K., Landi, M. T., Takeshita, M., Uziel, G., Fedrizzi, E., Borgese, N. A novel point mutation in a 3-prime splice site of the NADH-cytochrome b5 reductase gene results in immunologically undetectable enzyme and impaired NADH-dependent ascorbate regeneration in cultured fibroblasts of a patient with type II hereditary methemoglobinemia. Am. J. Hum. Genet. 57: 302-310, 1995. [PubMed: 7668255]

  48. Tanishima, K., Matsuki, T., Fukuda, N., Takeshita, M., Yoneyama, Y. NADH-cytochrome b5 reductase in platelets and leukocytes with special reference to normal levels and to levels in carriers of hereditary methemoglobinemia with or without neurological symptoms. Acta Haemat. 63: 7-12, 1980. [PubMed: 6768212] [Full Text: https://doi.org/10.1159/000207361]

  49. Tanishima, K., Tanimoto, K., Tomoda, A., Mawatari, K., Matsukawa, S., Yoneyama, Y., Ohkuwa, H., Takazakura, E. Hereditary methemoglobinemia due to cytochrome b(5) reductase deficiency in blood cells without associated neurologic and mental disorders. Blood 66: 1288-1291, 1985. [PubMed: 4063522]

  50. Townes, P. L., Morrison, M. Investigation of the defect in a variant of hereditary methemoglobinemia. Blood 19: 60-74, 1962. [PubMed: 13922201]

  51. Trost, C. The Blue People of Troublesome Creek. Science 82 (Nov.): 35-39, 1982.

  52. Vieira, L. M., Kaplan, J.-C., Kahn, A., Leroux, A. Four new mutations in the NADH-cytochrome b5 reductase gene from patients with recessive congenital methemoglobinemia type II. Blood 85: 2254-2262, 1995. [PubMed: 7718898]

  53. Vives-Corrons, J. L., Pujades, A., Vela, E., Corretger, J. M., Leroux, A., Kaplan, J. C. Congenital methemoglobin-reductase (cytochrome b5 reductase) deficiency associated with mental retardation in a Spanish girl. Acta Haemat. 59: 348-353, 1978. [PubMed: 97893] [Full Text: https://doi.org/10.1159/000207786]

  54. Waller, H. D. Inherited methemoglobinemia (enzyme deficiencies). Humangenetik 9: 217-218, 1970. [PubMed: 4393777] [Full Text: https://doi.org/10.1007/BF00279219]

  55. West, C. A., Gomperts, B. D., Huehns, E. R., Kessel, I., Ashby, J. R. Demonstration of an enzyme variant in a case of congenital methaemoglobinaemia. Brit. Med. J. 4: 212-214, 1967. [PubMed: 6061565] [Full Text: https://doi.org/10.1136/bmj.4.5573.212]

  56. Worster-Drought, C., White, J. C., Sargent, F. Familial, idiopathic methaemoglobinaemia associated with mental deficiency and neurological abnormalities. Brit. Med. J. 2: 114-118, 1953. [PubMed: 13059406] [Full Text: https://doi.org/10.1136/bmj.2.4828.114]

  57. Wright, R. O., Lewander, W. J., Woolf, A. D. Methemoglobinemia: etiology, pharmacology, and clinical management. Ann. Emerg. Med. 34: 646-656, 1999. [PubMed: 10533013] [Full Text: https://doi.org/10.1016/s0196-0644(99)70167-8]

  58. Wu, Y.-S., Huang, C.-H., Wan, Y., Huang, Q.-J., Zhu, Z.-Y. Identification of a novel point mutation (leu72-to-pro) in the NADH-cytochrome b5 reductase gene of a patient with hereditary methaemoglobinaemia type I. Brit. J. Haemat. 102: 575-577, 1998. [PubMed: 9695975] [Full Text: https://doi.org/10.1046/j.1365-2141.1998.00782.x]


Contributors:
Cassandra L. Kniffin - reorganized : 1/20/2010
Cassandra L. Kniffin - updated : 1/13/2010
Cassandra L. Kniffin - updated : 10/17/2005
Victor A. McKusick - updated : 1/27/2003
Victor A. McKusick - updated : 4/3/2001
Victor A. McKusick - updated : 8/24/2000
Victor A. McKusick - updated : 8/17/2000
Victor A. McKusick - updated : 3/11/1999
Victor A. McKusick - updated : 2/12/1998
Victor A. McKusick - updated : 12/10/1997
Mark H. Paalman - updated : 4/17/1997
Victor A. McKusick - updated : 2/17/1997
Stylianos E. Antonarakis - updated : 7/4/1996

Creation Date:
Victor A. McKusick : 6/24/1986

Edit History:
carol : 05/20/2019
carol : 05/14/2018
alopez : 09/16/2016
carol : 05/27/2016
alopez : 8/11/2015
alopez : 5/21/2015
carol : 2/23/2015
carol : 10/24/2013
terry : 10/12/2010
ckniffin : 4/8/2010
carol : 4/8/2010
carol : 2/24/2010
carol : 2/22/2010
carol : 1/20/2010
ckniffin : 1/13/2010
ckniffin : 1/13/2010
joanna : 9/4/2009
terry : 6/3/2009
carol : 3/20/2009
terry : 11/15/2006
wwang : 10/26/2005
ckniffin : 10/17/2005
wwang : 4/8/2005
carol : 3/17/2004
mgross : 12/16/2003
ckniffin : 7/8/2003
carol : 6/10/2003
terry : 5/16/2003
ckniffin : 2/28/2003
cwells : 1/27/2003
tkritzer : 1/21/2003
carol : 3/29/2002
terry : 6/6/2001
cwells : 4/9/2001
cwells : 4/4/2001
mcapotos : 4/3/2001
mcapotos : 8/30/2000
mcapotos : 8/29/2000
mcapotos : 8/29/2000
carol : 8/28/2000
terry : 8/24/2000
carol : 8/18/2000
carol : 8/18/2000
terry : 8/17/2000
carol : 3/16/1999
terry : 3/11/1999
carol : 7/30/1998
terry : 6/4/1998
mark : 2/18/1998
terry : 2/12/1998
mark : 12/17/1997
terry : 12/10/1997
terry : 12/10/1997
alopez : 4/17/1997
mark : 4/17/1997
mark : 2/17/1997
terry : 2/11/1997
carol : 7/4/1996
terry : 7/1/1996
mark : 9/13/1995
davew : 7/26/1994
carol : 4/20/1994
mimadm : 4/18/1994
warfield : 4/15/1994
carol : 5/13/1993