Краткий исторический обзор исследований внеклеточного матрикса


Подобно другим разделам клеточной биологии, исследования внеклеточного матрикса и межклеточных контактов прошли через четыре исторических этапа ( рис. 19.В1 ). Первый этап начался в середине XVII в. и был связан с изобретением микроскопа, с помощью которого можно было наблюдать отдельные клетки. По мере разработки все более изощренных методов, позволяющих видеть субклеточные структуры, исследователи пришли к выводу о сложном строении поверхности и содержимого клетки. Одновременно с развитием клеточной теории биологи начали понимать, насколько важную роль играют клетки в развитии сложных организмов. Стало возможным оценить на структурном уровне невероятную вариабельность форм, размеров и способов организации клеток в ткани. В середине XIX в. оформилась новая область биологии - гистология . Задачей гистологии стало исследование мельчайших структур (часто называемых ультраструктурами), составляющих ткани многоклеточных организмов.

Однако в картине, описывающей архитектуру ткани, отсутствовала одна деталь. Что находится в межклеточном пространстве ? Главным образом изучали те структуры, которые можно было наблюдать с помощью микроскопа. Структурам, невидимым в микроскоп, уделяли меньше внимания. Под обычным, световым микроскопом, межклеточное пространство в большинстве тканей выглядело довольно слабо прокрашенным и имело аморфную структуру. В ранних гистологических описаниях о нем вообще нет упоминаний.

Вторая стадия началась в середине XX в. с появлением мощных световых и электронных микроскопов. При анализе в световом микроскопе препаратов тканей, окрашенных гистологическими красителями, было обнаружено, что внеклеточное пространство заполнено жидкой средой ( рис. 19.В2 ). В электронном микроскопе в этом пространстве была заметна сеть, состоящая из структурного материала ( рис. 19.3 ). Более того, стало ясно, что на поверхности клеток формируются специальные контакты, которые взаимодействуют с этим материалом и друг с другом ( рис. 19.45 ). Наконец признали, что ткани состоят из клеток, жидкой среды и этого внеклеточного материала. Этой группе структурных материалов было дано название: внеклеточный матрикс (ВКМ) . Однако с помощью микроскопа было невозможно рассмотреть отдельные компоненты ВКМ.

Начало третьей стадии пришлось на 1970-е гг., когда было разработано много новых методов, позволяющих фракционировать, выделять и характеризовать отдельные компоненты клетки. По мере использования новых методов биохимии, генетики, молекулярной биологии и микроскопии, клеточная биология начала быстро развиваться. Например, разработка экспресс-методов секвенирования ДНК позволила исследователям секвенировать полностью геном у нескольких организмов. Вероятно, что вскоре мы сможем идентифицировать у них каждый ген.

Используя эти методы для идентификации сотен белков, входящих во ВКМ и составляющих межклеточные контакты, мы сталкиваемся со следующим важным вопросом: каковы функции этих белков? В настоящее время считается общепризнанным, что внеклеточный матрикс играет критическую роль не только в формировании трехмерной организации тканей, но также контролирует рост, подвижность, дифференцировку и взаимодействие входящих в них клеток. Более того, эти функции регулируются контактами, посредством которых клетки соединяются друг с другом и с внеклеточным матриксом. В настоящее время основные усилия исследователей в этой области направлены на выяснение молекулярных механизмов, обеспечивающих такие функции. При этом используется световая микроскопия в сочетании с методами генетики и молекулярной биологии. Существенную помощь оказывают методы, позволяющие получать прижизненные изображения клетки. Это четвертый этап исследований ВКМ и межклеточных контактов.

Смотрите также:

  • ВНЕКЛЕТОЧНЫЙ МАТРИКС И АДГЕЗИЯ КЛЕТОК