Трансляция: модели


В классической модели трансляции перемещение молекул тРНК на большой и малой субчастицах рибосом сопряжено друг с другом. В модели гибридных состояний (hybrid states model) перемещение тРНК между A- и P-участками 30S субчастицы происходит независимо от перемещения тРНК между A-, P- и E-участками большой субчастицы . В соответствии с этой моделью аминоацил-тРНК попадает в пептидил- тРНК-рибосомный комплекс в составе тройного комплекса EF-Tu-GTP- тРНК и взаимодействует с ней первоначально в гибридном состоянии A/E. В этом состоянии антикодоновая часть тРНК связывается с A- участком 30S субчастицы, а ее CCA-конец, удерживаемый EF-Tu , располагается в E-участке большой субчастицы и частично на малой субчастице. Вслед за гидролизом GTP происходит освобождение EF- Tu, что делает возможным перемещение CCA-конца аминоацил-тРНК в A-участок большой субчастицы, приводящее к возникновению A/A- состояния, эквивалентного состоянию взаимодействия аминоацил-тРНК с A-участком в классической модели. После образования пептидной связи аминоацил-тРНК, уже связанная с растущей полипептидной цепью, перемещается в P-участок большой субчастицы, а деацилированная тРНК переходит в E-участок большой субчастицы. Вновь образованная пептидил-тРНК находится теперь в гибридном A/P-состоянии: антикодоновая часть остается в A-участке 30S субчастицы, а CCA-конец занимает P-участок большой субчастицы рибосом. При этом деацилированная тРНК находится в гибридном P/E- состоянии: антикодоновый конец остается в P-участке малой субчастицы, тогда как CCA-конец занимает E-участок большой субчастицы. Далее фактор элонгации EF-G в GTP-зависимой реакции обеспечивает перемещение антикодоновой части тРНК, находящейся в гибридном состоянии, вместе с мРНК относительно 30S субчастицы. При этом пептидил-тРНК переходит в чувствительное к пуромицину P/P-состояние, соответствующее ее взаимодействию с P-участком в классической модели, а деацилированная тРНК находится в E- состоянии и на этом этапе трансляции может взаимодействовать только с E-участком большой субчастицы рибосом.

Из модели гибридного состояния вытекает, что, во-первых, пептидильная часть растущего пептида остается на рибосомах в стационарном состоянии, а во время трансляции перемещается тРНК. Во-вторых, транслокация тРНК происходит в два этапа: во время первой стадии обе молекулы тРНК движутся относительно большой субчастицы, на втором этапе обе молекулы тРНК вместе со связанной с ними мРНК перемещаются относительно малой 30S субчастицы рибосом. В-третьих, в процессе синтеза белка имеют место не два или три состояния связывания тРНК, а шесть или даже, возможно, семь таких состояний.

С помощью физических методов были получены прямые доказательства спонтанного прохождения стадии транслокации , опосредуемой пептидилтрансферазой рибосом. При использовании флуоресцентных зондов, связанных с различными участками тРНК и рибосом, удалось обнаружить изменения в квантовом выходе флуоресценции и анизотропные эффекты при образовании пептидной связи, что указывало на перемещение молекулы тРНК относительно рибосомных белков S21 и L11 . На основании этих данных было высказано предположение, что во время пептидилтрансферазной реакции пептидильная цепь остается в постоянном положении относительно рибосомы, а перемещаются молекулы тРНК. Эта модель пептидилтрансферазной реакции получила название модели перемещения (displacement model). Она обладает многими общими чертами с моделью гибридного состояния , однако отличается тем, что в этой модели движение мРНК в пептидилтрансферазной реакции сопровождает перемещение тРНК.

Смотрите также:

  • ТРАНСЛЯЦИЯ