Схемы внутриклеточных систем передачи сигналов


Внутриклеточные системы передачи сигналов можно представить как биохимическую логическую схему.

Основные положения:

- Сигнальные сети состоят из групп биохимических реакций, которые напоминают функции математической логики, интегрирующие информацию.

- Для обработки информации на более высоком уровне комбинации таких логических функций объединяются в сигнальные сети.

Как отмечалось в предыдущем разделе, функции передачи сигналов, используемые для интеграции информации и ее направления к клеточным мишеням, удивительно напоминают функции математической логики, которые используются для проектирования индивидуальных цепей электронных компьютеров. Действительно, существуют биологические эквиваленты практически всех функциональных компонентов, которые хорошо известны компьютерщикам и инженерам, занимающимся конструированием компьютеров и электронных контрольных приборов. Поэтому для того, чтобы понять, как функционируют пути передачи сигнала, полезно рассмотреть отдельные группы реакций в составе процесса как составляющие логической цепи, похожей на компьютерную ( рис. 18.5 ). Простейшим примером служит конвергенция двух процессов, ведущих к стимуляции. Если каждый из них генерирует сигнал, достаточный для того, чтобы вызвать ответ, то конвергенция представит функцию "ИЛИ". Если ни на одном из входов сигнал недостаточен, но комбинация обоих вызывает ответ, то конвергирующий путь создаст функцию "И". Цепи типа "И" также рассматриваются как детекторы совпадений , т.е. ответ генерируется только в том случае, когда одновременно активируются два пути стимуляции.

Функция "И" возникает в результате комбинации двух близких, но в количественном отношении неадекватных входных сигналов. Наоборот, для генерации ответа могут потребоваться оба механистически разных входных сигнала. Примером служит белок-мишень, который аллостерически активируется только при фосфорилировании, или же он активируется при фосфорилировании, но начинает функционировать только после своей транслокации в специфические внутриклеточные сайты.

Противоположность функции "И" представляет собой функция "НЕ". Она характеризуется тем, что один путь блокирует стимулирующий эффект другого. Во многих точках клеточных сигнальных путей существуют простые логические шлюзы.

Можно также предполагать существование конвергентного пути передачи сигнала в количественном (аналоговом), а не в булевом (логическом) смысле, рассматривая аддитивность входных сигналов как отдельный процесс ( рис. 18.5 справа). Функция "ИЛИ", относящаяся к верхнему рисунку, может рассматриваться как аддитивный положительный входной сигнал от двух путей. Такая аддитивность может отражать способность двух рецепторов стимулировать пул особого G-белка, или способность двух протеинкиназ фосфорилировать один субстрат. Аддитивность может приводить к положительному сигналу, как в примере выше, или к отрицательному, когда объединяются два ингибиторных входных сигнала. Ингибирование и стимуляция могут также объединяться аддитивно, давая на выходе алгебраически сбалансированный сигнал. Наоборот, множественные входные сигналы способны объединяться, давая суммарный сигнал больше или меньше аддитивного. Обсуждавшаяся выше функция "НЕТ" аналогична описывающей блокаду стимуляции. Функция "И" описывает синергизм, при котором один входной сигнал потенцирует другой, но сам по себе дает небольшой эффект.

Даже для простой сигнальной сети характерна сложная схема обработки информации. Хорошим примером служит создание "памяти": преобразование эффекта временного сигнала в более или менее постоянный. Системы передачи располагают множеством механизмов формирования памяти и забывания сигнала. Один из механизмов, общий для протеинкиназного пути, представляет собой цикл положительной обратной связи, и представлен в верхней части рис. 18.6 . В этом цикле сигнал на входе стимулирует передатчик (Т), который, в свою очередь, активирует эффекторный белок (Е), формирующий выходной сигнал. Если эффектор также может стимулировать передатчик, то часть начального сигнала может передаваться на передатчик. При этом передатчик может обеспечивать появление на выходе полного сигнала эффектора, даже при отсутствии входного сигнала. Как показано на рис. 18.6 справа, для такой системы обычно характерно существование порогового эффекта.

Положительная опережающая связь может генерировать память другого типа ( рис. 18.6 , в центре), которая отмечает продолжительность входного сигнала. В таких цепях эффектору необходимы одновременные входные сигналы от рецептора и от промежуточного передатчика. Если путь передачи сигнала от рецептора через передатчик относительно медленный или же необходимо накопление значительных количеств передатчика, ответ включится только при продолжительном сигнале. Это показано на временной диграмме выходного сигнала справа.

Третий путь запоминания представляет собой разрешение одному входному сигналу контролировать обратимость второго регуляторного события ( рис. 18.6 , внизу). Белок WASP , который инициирует полимеризацию актина, обеспечивающую подвижность клетки и изменение ее формы, активируется при фосфорилировании и при связывании с Cdc42 , который представляет собой небольшой ГТФ-связывающий белок (G) . Однако фосфорилированный сайт на WASP открывается только после его связывания с Cdc42. Таким образом, для фосфорилирования требуется активированный Cdc42 и активированная протеинкиназа. Если Cdc42 диссоциирует, фосфорилированное состояние WASP поддерживается до тех пор, пока с ним опять не свяжется другая сигнальная молекула, природа которой неизвестна. При этом снова откроется сайт для протеинфосфатазы. Как представлено на графике временной заисимости, связывание с Cdc42 приводит к активирующему эффекту, а связывание только с киназой не оказывает такого действия. Если присутствует Cdc42, то киназа может активировать WASP. Фосфо-WASP относительно устойчив к одной протеинфосфатазе (Р), однако он дефосфорилируется, если Cdc42 или другой G-белок связывается с ним и открывает сайт для фосфатазы.

Смотрите также:

  • ФУНКЦИОНИРОВАНИЕ ВНУТРИКЛЕТОЧНЫХ СИСТЕМ ПЕРЕДАЧИ СИГНАЛОВ