Теломеры: роль в клеточном старении


Детерминированность процесса клеточного старения предполагает наличие молекулярного механизма, позволяющего клетке " отсчитывать" число пройденных удвоений. ДНК является единственной макромолекулой, обладающей достаточной стабильностью, чтобы служить базой такого механизма. Основой функционирования "молекулярных часов" могут быть изменения ДНК, сопряженные с процессом ее репликации, такие как метилирование ДНК, либо потеря части ДНК в результате ее неполной репликации. В натоящее время роль "молекулярных часов" отводится теломерам линейных хромосом эукариотических клеток.

Хромосомы позвоночных оканчиваются последовательностью ТТАGGG, повторенной в теломерах сотни и тысячи раз ( Blackburn E.H., 1991 ). Считается, что функциями теломерного повтора является защита хромосом от деградации и предотвращение их слияния друг с другом ( Zakian V.A., 1989 ; Counter C.M. et al., 1992 ). Анализ длины теломерных повторов выявил, что соматические клетки теряют от 50 до 200 нуклеотидов при каждом клеточном делении ( Harley C.B. et al., 1990 ). Причиной этого явления является неполная репликация концов хромосом из-за особенностей молекулярного механизма репликативного синтеза ДНК ( Оловников А.М., 1971 ; Watson J.D., 1972 ). Отстающая цепь репликативной вилки в синтезе ДНК не может синтезироваться до 5'-конца в отсутствие рибопраймера, который, в свою очередь, не образуется непосредственно на концевом фрагменте. Потери концевой ДНК делают невозможной бесконечную пролиферацию. Предполагают, что укорачивание хромосом до определенного размера индуцирует процессы клеточного старения, а длина теломер, по этим представлениям, может служить мерой пролиферативного потенциала клеток ( Allsopp R.C. et al., 1992 ).

Предложено несколько гипотетических моделей, объясняющих каким образом клетка "определяет" длину своих теломер и в определенный момент запускает механизм блока пролиферации. Возможно, определяется общее количество ТТАGGG повторов благодаря учету специфически связывающегося с ними белка ( Kipling D. et al., 1992 ).

Другая модель исходит из того, что длинные теломеры молодых клеток находятся в области гетерохроматина. Предполагается, что ген, супрессирующий программу клеточного старения, локализован в субтеломерном районе. По мере укорачивания теломер область гетерохроматина включает в себя все больше субтеломерной ДНК. Включение в эту область гена-супрессора приводит к его инактивации и запуску механизма клеточного старения ( Wright W.E., Shay J.W., 1992 ).

В противоположность соматическим смертным клеткам, то есть клеткам, обладающим пределом размножения in vitro, большинство иммортальных клеток, обладающих способностью к бесконечной пролиферации, содержит теломеразу ( Kim N.W. et al., 1994 ).

Обнаружено, что в соматических клетках, делящихся в организме, длина теломер со временем уменьшается. Укорочение тепомер наблюдается также по мере старения фибробластов в культуре. Более того, оказалось, что длина теломер лучше предсказывает способность клетки к делению, чем возраст донора клеток. Предположительно, теломеры укорачиваются в результате того, что механизм, ответственный за удвоение ДНК в процессе клеточного деления, делает характерную ошибку - в каждой новой копии ДНК элиминируется маленький участок каждой теломеры ( Мойзис. Р.,1991 ) Из этого следует, что теломеры могут быть теми часами, которые определяют в клетках потерю способности к пролиферации. Интересно, что, по данным Харли и Грейдера, длина теломер сохраняется или даже немного увеличивается в сперматозоидах и в трансформированных ("бессмертных") клетках . Такое постоянство помогает объяснить, каким образом половые и злокачественные клетки не утрачивают способности к делению.

Можно, таким образом, выдвинуть предположение, что организм в целом угасает, когда его отдельные органы неизбежно утрачивают способность замещать поврежденные клетки. Однако, как отмечают скептики, люди ведь не умирают от того, что их фибробласты перестают удваиваться. Обычно у клеток остается неиспользованный запас потенциальных делений, когда их "владелец" погибает. В числе критических аргументов также заявляется, что изучение ослабления способности к пролиферации никак не проясняет процессы, приводящие к гибели неделящихся клеток, а именно нейронов и клеток сердечной мышцы, которые годами превосходно функционируют. Мало изучать процесс клеточной пролиферации, его возможности и пределы - надо еще показать, как получаемые результаты соотносятся со старением человека.

Генетические изменения, наблюдаемые в фибробластах, отражают, быть может, лишь один аспект процесса старения, но зато весьма важный.

Возможно, возникают локальные области, в которых клетки функционируют неправильно и не могут быть заменены. Например слой эндотелия кровеносных сосудов толщиной в одну клетку. Если клетки эндотелия на небольшом участке кровеносного сосуда теряют способность к пролиферации и утрачиваются или же не функционируют, это может привести к атеросклерозу. Кроме того, уменьшение способности к пролиферации составляет серьезную проблему в иммунной системе.

Как соотносятся результаты, полученные на фибробластах, с эволюционными гипотезами? Многие исследователи, считают, что ограничение пролиферации могло возникнуть не как "программа смерти", а как защитный механизм против рака . В таком случае потеря способности к клеточному делению является еще одним примером антагонистической плейотропии. Хотя многие люди в конце концов заболевают раком, человеку присуща сопротивляемость, обеспечивающая значительно меньшую подверженность опухолям по сравнению с животными.

Соматические клетки совершают ограниченное число делений в культуре и приходят в состояние необратимой остановки в фазах клеточного цикла G1 и G2/M, которое и называется старением (senescence) . Было высказано предположение, что укорочение теломер, связанное с проблемой концевой репликации , служит митотическими часами, работа которых в конце концов приводит к старению. Предложено несколько моделей для объяснения того, как укорочение теломер ведет к старению клетки. Мы ранее предположили, что укорочение теломер может в конце концов привести к формированию дицентрических хромосом, последующий разрыв которых активирует реакцию на повреждение ДНК, опосредованную белком р53. Поэтому мы предположили, что сигнал укорочения теломер воспринимается клеткой как повреждение ДНК.

Получены экспериментальные доказательства посттрансляционной активации белка р53 в фибробластах человека, в которых происходят укорочение теломер и последующее старение в культуре. В этой статье мы также показываем, что повышение активности белка р53 совпадает с формированием дицентрических хромосом и старением. Ранее мы также показали, что повышение уровня p21WAF1/SDll/CIP1 , т.е. иерархически одной из ближайших мишеней белка р53, зависит как от белка р53, так и от рЗОО . Мы также показали, что фибробласты, взятые у больных с атаксией-телангиэктазией , ускоренно теряют теломерную ДНК, активируют белок р53 и подвергаются преждевременному старению в культуре. Эти данные свидетельствуют о том, что ATM и р53 участвуют в мониторинге и регуляции теломерной ДНК. После достижения критической длины теломерной ДНК ATM и р53 воспринимают и передают этот сигнал в клеточный цикл, что ведет к старению.

Смотрите также:

  • Генетическая нестабильность и мобильные элементы
  • Генетическая нестабильность, возраст и ослабление репарации ДНК
  • Генетическая нестабильность и старение клетки: введение
  • Генетическая нестабильность и укорочение теломер
  • ТЕЛОМЕРЫ: УКОРОЧЕНИЕ И СТАРЕНИЕ КЛЕТОК