Репрограммирование клеточной судьбы


Вопрос о том, каким образом можно изменить или ревертировать судьбу клетки, давно интересовал ученых. Зародышевая клетка и ранние эмбриональные клетки отличаются от других клеточных компартментов как "конечные" [ultimate] стволовые клетки свойственной им тотипотентностью. Хотя спецификация клеточной судьбы у млекопитающих допускает около 200 разных клеточных типов, в принципе существуют два главных дифференцировочных перехода: от стволовой (тотипотентной) клетки к полностью дифференцированной клетке и между покоящейся (quiescent, или G0) и пролиферирующей клеткой. Эти типы представляют собой крайние конечные точки среди множества промежуточных состояний, согласующихся с множеством различных компоновок эпигенома в развитии млекопитающих. В ходе эмбриогенеза динамическое увеличение эпигенетических модификаций проявляется в переходе от оплодотворенного ооцита к стадии бластоцисты и затем в имплантации, гаструляции , развитии органов и росте плода. Большинство этих модификаций или импринтов может быть стерто путем переноса ядра дифференцированной клетки в цитоплазму денуклеированного ооцита. Однако некоторые метки могут сохраняться, ограничивая тем самым нормальное развитие клонированных эмбрионов, а некоторые из них могут даже наследоваться как модификации зародышевого пути (g-mod) ( рис. 3.18 ), которые у млекопитающих, вероятно, включают метилирование ДНК.

Регенерация печени и репарация мышечной клетки представляют собою исключения среди тканей млекопитающих, поскольку эти органы могут регенерировать в ответ на повреждение, хотя большинство других тканей не способны к репрограммированию. У других организмов, таких как растения и Axolotl , некоторые соматические клетки могут действительно репрограммировать свой эпигеном и вновь вступать в клеточный цикл, чтобы регенерировать утраченную или поврежденную ткань ( Tanaka, 2003 ). В целом, однако, репрограммирование соматических клеток невозможно, если они не подвергаются клеточно-инженерным манипуляциям с целью рекапитулировать раннее развитие после пересадки ядра ( NT , nuclear transfer) в денуклеированный ооцит. Впервые это было продемонстрировано клонированием лягушек (Xenopus), а в более недавнее время - созданием Долли, первого клонированного млекопитающего ( Campbell et al., 1996 ).

У млекопитающих были идентифицированы три основных препятствия для эффективного соматического репрограммирования. Во-первых, некоторые соматические эпигенетические метки (например, репрессивные НЗК9meЗ ) стабильно передаются в ряду делений соматических клеток и устойчивы к репрограммированию в ооците. Во-вторых, ядро соматической клетки не способно рекапитулировать асимметрию репрограммирования, возникающую в оплодотворенном эмбрионе как следствие дифференциальных эпигенетических меток, унаследованных мужским и женским гаплоидными геномами ( Mayer et al., 2000 ; van der Heiden et al., 2005 ). В-третьих, передача импринтированных локусов, которые особенно важны на стадии фетального и плацентарного развития, недостаточно надежно поддерживается после NT ( Morgan et al., 2005 ). Большинство клонированных эмбрионов абортируют, и это заставляет предполагать, что нарушение эпигенетических импринтов является основным узким местом для нормального развития и может быть причиной низкой эффективности вспомогательных репродуктивных технологий ( ART , assisted reproductive technologies) и ухудшенного физического состояния клонированных животных.

Использование эмбриональных стволовых клеток вместо соматических демонстрирует значительно увеличенные возможности репрограммирования. Демонстрация того, что покоящиеся клетки (частая характеристика стволовых клеток) обнаруживают снижение уровня состояний НЗК9mеЗ и Н4К20mеЗ, могла бы указывать на увеличенную пластичность эпигенома ( Baxter et al., 2004 ). Это согласуется также с тем фактом, что у "бессмертных" одноклеточных организмов (например, дрожжей) с их открытым, в значительной степени, и активным геномом отсутствуют несколько репрессивных эпигенетических механизмов.

Другой особенностью нормального эпигенетического репрограммирования у млекопитающих после оплодотворения является его отчетливая асимметрия. Это можно приписать прежде всего различным программам эпигенетической спецификации в мужских и женских зародышевых клетках (главы " Геномный импринтинг у млекопитающих " и " Зародышевая линия и плюрипотентные стволовые клетки "). Геном спермия в основном составлен из протаминов, хотя имеется и остаточный, но достоверный уровень CENP-A (вариант гистона НЗ) и другие предполагаемые эпигенетические импринты ( Kimmins and Sassone-Corsi, 2005 ), тогда как ооцит состоит из регулярного хроматина , содержащего нуклеосомы . После оплодотворения гаплоидные геномы спермия и ооцита проделывают еще один цикл репрограммирования, включающий деметилирование ДНК и обмен гистоновых вариантов . В первом клеточном цикле эти модификации могут либо усиливать, либо уравновешивать эпигенетические различия двух родительских геномов перед слиянием ядер. В ходе дифференцировки эмбриональной (внутренняя клеточная масса [ ICM , inner cell mass]) и экстраэмбриональной (трофэктодерма [ ТЕ ] и плацента) тканей между линями устанавливаются различные профили метилирования ДНК и модификации гистонов ( Morgan et al., 2005 ). Соматическое клонирование не может надежно рекапитулировать эти паттерны репрограммирования, демонстрируя быстрое, но менее экстенсивное деметилирование в первом клеточном цикле и нарушенное метилирование ДНК и метилирование лизинов гистонов при сравнении клеток ICM и ТЕ.

С проблемой репрограммирования соматических клеток тесно связана судьба импринтированных генных локусов. Для нормального эмбрионального развития требуется правильная аллельная экспрессия в импринтированных локусах (глава " Геномный импринтинг у млекопитающих "). Это было продемонстрировано оригинальными экспериментами по получению однородительских эмбрионов ( Barton et al., 1984 ; McGrath and Solter, 1984 ; Surani et al., 1984 ). Андрогенетические эмбрионы (оба генома которых имеют отцовское происхождение) обнаружили замедленное эмбриональное развитие, но гиперпролиферацию экстраэмбриональных тканей (например, плаценты). У гино- или партеногенетических эмбрионов (оба генома которых имеют материнское происхождение) плацента недоразвита. Следовательно, после стирания предсуществовавших меток в зародышевой клетке должен быть установлен специфичный по отношению к родителю импринт (глава " Зародышевая линия и плюрипотентные стволовые клетки ")). Полагают, что это происходит приблизительно для 100 или даже большего числа импринтированных генов, в основном участвующих в системах обеспечения ресурсами эмбрионального и плацентарного развития (например, ростовой фактор Igf2 ). Любопытно отметить данные о том, что импринтинг может быть нарушен во время культивирования in vitro эмбрионов, полученных с помощью ART или пересадки ядра ( Maher, 2005 ).

Смотрите также:

  • ЭПИГЕНЕТИКА: ОБЩИЙ ОБЗОР И ОСНОВНЫЕ ПОНЯТИЯ