Нуклеоид бактериальный


Каждый, кому приходилось разрушать бактериальные клетки в мягких условиях, например, с помощью лизоцима или детергентов, наблюдал замечательную картину превращения легко подвижной суспензии бактериальных клеток в вязкую желеобразную массу, простое перемешивание которой требует усилий. Это происходит из- за того, что компактно упакованные гигантские хромосомы бактериальных клеток (длина хромосомной ДНК E. coli составляет около 4,6 млн. п.о.) после разрушения оболочки клеток выходят в окружающую среду и свободно в ней распределяются. В лизатах бактериальных клеток их ДНК прочно ассоциированы с белками, освобождение от которых требует проведения многократных фенольных депротеинизаций. Такой простой опыт наглядно указывает на то, что в бактериальных клетках их единственная хромосома сильно компактизована и, возможно, пространственно упорядочена.

Электронно-микроскопическое изучение срезов бактериальных клеток показало компактное распределение ДНК в бактериальной клетке. Поскольку такие структуры отдаленно напоминали ядра эукариот, они получили название нуклеоидов, или ДНК-плазмы . Нуклеоиды представлены в виде диффузно окрашенных областей, свободных от рибосом ( рис. I.1,а ). При этом вытянутые участки ДНК на внешней части нуклеоидов направлены в окружающую цитоплазму. С помощью специфических антител установлено, что молекулы РНК-полимеразы , ДНК-топоизомеразы I и гистоноподобного белка HU ассоциированы с нуклеоидами. Вытянутые участки ДНК по периферии нуклеоидов обычно интерпретируют как сегменты бактериальной хромосомы, вовлеченные в транскрипцию. Эти участки состоят из петель ДНК бактериальной хромосомы, которые в зависимости от физиологического состояния клетки находятся в транскрипционно- активном состоянии или втягиваются внутрь нуклеоидов при подавлении транскрипции.

Модель функционально-активного нуклеоида А.Райтера и А.Чанга представлена на рис. I.1,б . Размытая структура поверхности нуклеоидов, видимая под электронным микроскопом, отражает подвижное состояние активно транскрибируемых петель ДНК. В этой модели прослеживается аналогия со структурой хромосом типа ламповых щеток у животных.

Нуклеоид бактериальных клеток не является статическим внутриклеточным образованием или компартментом, которые можно четко определять морфологически. Во время различных фаз роста бактериальных клеток нуклеоид непрерывно меняет форму, что сопряжено с транскрипционной активностью определенных бактериальных генов. Так же как и в хромосомах эукариот, ДНК нуклеоида ассоциирована со многими ДНК-связывающими белками, в частности, гистоноподобными белками HU , H-NS и IHF , а также топоизомеразами , которые оказывают большое влияние на функционирование бактериальных хромосом и их внутриклеточную компактизацию. Детальные молекулярные механизмы конденсации бактериальной ДНК с образованием лабильных " компактосом " (по аналогии со стабильными нуклеосомами эукариот) неизвестны.

Возрастает интерес к бактериальному так называемому LP-хроматину (low protein chromatin) , для которого характерно относительно низкое содержание белкового компонента. Аналогичный LP-хроматин обнаруживают у вирусов, в митохондриях, пластидах и у динофлагеллят (жгутиконосцев).

Определена полная последовательность нуклеотидов хромосом паразитических бактерий: микоплазмы Mycoplasma genitalium и Haemophilus influenzae. В 1997 г. определена полная первичная структура хромосом E. coli и Bacillus subtilis длиной около 4,6 и 4,2 млн п.о. соответственно.

Смотрите также:

  • Домены эукариотических геномов и петли ДНК хромосом: введение
  • Геном прокариот: общие сведения
  • ГЕНОМ ПРОКАРИОТ