Фермент, энзим (enzyme)
Фермент, энзим (enzyme) [лат. fermentum — закваска; греч. en- — приставка, означающая «нахождение внутри», и zyme — закваска, дрожжи] — биокатализатор белковой природы, который может быть животного, растительного или микробного происхождения; обладает высокой активностью и специфическим действием на субстрат. Через посредство Ф. реализуется генетическая информация и осуществляются все метаболические процессы в живых организмах. Ф. обладают рядом характерных черт: 1) не входят в состав конечных продуктов реакции и выходят из нее, как правило, в первоначальном виде; 2) не смещают положение равновесия, а лишь ускоряют его достижение. По рекомендации Международного биохимического союза все Ф. в зависимости от типа катализируемой реакции делят на 6 классов: 1-й — оксидоредуктазы (см. Оксидоредуктазы), 2-й — трансферазы (см. Трансферазы), 3-й — гидролазы (см. Гидролазы, гидролитические ферменты), 4-й — лиазы (см. Лиазы), 5-й — изомеразы (см. Изомеразы) и 6-й — лигазы (см Лигазы). Каждый класс делится на подклассы в соответствии с природой функциональных групп субстратов, подвергающихся химическому превращению. Активность Ф. зависит от множества факторов: температуры, рН среды, ионной силы и др. Ф. могут обладать относительной или абсолютной специфичностью. Относительная специфичность свойственна, напр., гексокиназе, катализирующей в присутствии АТФ (см. Аденозинтрифосфат, АТФ) фосфорилирование почти всех гексоз, хотя одновременно в клетках имеются специфические для каждой гексозы ферменты, выполняющие такое же фосфорилирование. Абсолютной специфичностью действия называют способность фермента катализировать превращение только единственного субстрата. Любые модификации в структуре субстрата делают его недоступным для действия Ф. Ф. присуща также стереохимическая специфичность, которая обусловлена существованием оптически изомерных L- и D-форм или геометрических (цис и транс) изомеров (см. Изомеры) химических веществ. Напр., известны оксидазы L- и D-аминокислот, хотя в природных белках обнаружены только L-аминокислоты. Каждый из видов оксидаз действует только на свой специфический стереоизомер. Примером стереохимической специфичности может служить бактериальная аспартатдекарбоксилаза, катализирующая отщепление СО2 только от L-аспарагиновой кислоты с превращение ее в L-аланин. В промышленных масштабах Ф. получают из растений, животных и микроорганизмов. Использование последних имеет то преимущество, что позволяет производить Ф. в огромных количествах с помощью стандартных методов ферментации. Кроме того, повысить продуктивность микроорганизмов намного легче, чем растений или животных, а применение технологии рекомбинантных ДНК позволяет синтезировать животные Ф. в клетках микроорганизмов. В настоящее время с помощью микробиологического синтеза (см. Микробиологический синтез) налажено производство большого числа разнообразных Ф. Продуцентами Ф. служат многочисленные представители грибов (см. Грибы), некоторые актиномицеты (см. Актиномицеты) и бактерии (см. Бактерии). Ф. используют при переработке с.-х. сырья в пищевой промышленности, иногда применяя для этой цели комплексные ферментные препараты. Так, при переработке раститительного сырья ферментный комплекс должен содержать целлюлазы, гемицеллюлазы, пектиназы, протеазы и некоторые другие Ф. Начало современной науки о Ф. (энзимологии) связывают с открытием в 1814 г. К. Кирхгофом превращения крахмала в сахар под действием водных вытяжек из проростков ячменя. Впервые первичная структура (аминокислотная последовательность) Ф. была установлена У. Стейном и С. Муром в 1960 г. для рибонуклеазы А, а в 1969 г. P. Меррифилдом осуществлен химический синтез этого Ф. Пространственное строение (третичная структура) Ф. впервые установлено Д. Филлипсом в 1965 г. для лизоцима. В настоящее время известно более 3,5 тыс. различных Ф. Термин «Ф.» был предложен Б. Ван-Гельмонтом в начале XVII в., термин «энзим» введен В. Кюне в 1876 г.
Смотрите также: